Luogu5349 幂
题面
题解
首先考虑对于一个单项式怎么做,多项式就是单项式的答案的和。
就求一下\(\mathbf f(n) = n^k\)吧。(下面设\(t = \dfrac 1r\))
设\(\mathbf S_k = \sum_{n=0}^\infty n^k \left(\dfrac 1t\right)^n\)
\(t\mathbf S_k = \sum_{n=1}^\infty n^k \left(\dfrac 1t\right)^{n-1} = \sum_{n=0}^\infty (n+1)^k \left(\dfrac 1t\right)^n\)
所以\((t - 1) \mathbf S_k = \sum_{n=0}^\infty [(n+1)^k - n^k]\left(\dfrac 1t\right)^n\)
将\((n+1)^k\)用二项式定理展开可以发现:
\(\mathbf S_k = \dfrac 1{t-1} \sum_{i=0}^{k-1} \binom ki \mathbf S(i), \mathbf S_0 = \dfrac t{t-1}\)
于是\(\mathbf S_{k} = \dfrac {k!}{t-1}\sum_{i=0}^{k-1} \dfrac 1{(k - i)!} \dfrac {\mathbf S(i)}{i!}\)
显然卷积的形式,分治\(\mathrm{FFT}\)即可。
代码
我不会告诉你我是直接蒯的分治FFT的代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int Mod(998244353), G(3), maxn(3e5 + 10), phi(Mod - 1);
inline int fastpow(int x, int y)
{
int ans = 1;
while(y)
{
if(y & 1) ans = 1ll * ans * x % Mod;
x = 1ll * x * x % Mod, y >>= 1;
}
return ans;
}
inline int Inv(int x) { return fastpow(x, Mod - 2); }
int r[maxn], N, m, f[maxn], g[maxn], fac[maxn], inv[maxn], invk;
template<int opt> void FFT(int *p)
{
for(RG int i = 0; i < N; i++) if(i < r[i]) std::swap(p[i], p[r[i]]);
for(RG int i = 1; i < N; i <<= 1)
{
int rot = fastpow(G, phi / (i << 1));
for(RG int j = 0; j < N; j += (i << 1))
{
int w = 1;
for(RG int k = 0; k < i; ++k, w = 1ll * w * rot % Mod)
{
int x = p[j + k], y = 1ll * w * p[i + j + k] % Mod;
p[j + k] = (x + y) % Mod, p[i + j + k] = (x - y + Mod) % Mod;
}
}
}
if(opt == -1) std::reverse(p + 1, p + N);
}
void Div(int l, int r)
{
static int a[maxn], b[maxn], P;
if(r - l <= 1) return;
int mid = (l + r) >> 1;
Div(l, mid);
for(m = r - l, N = 1, P = -1; N <= m; N <<= 1, ++P);
int invn = Inv(N);
for(RG int i = 0; i < N; i++)
::r[i] = (::r[i >> 1] >> 1) | ((i & 1) << P);
std::copy(f + l, f + mid, a); std::fill(a + mid - l, a + N, 0);
for(RG int i = 0; i < mid - l; i++) a[i] = 1ll * a[i] * inv[i + l] % Mod;
std::copy(inv, inv + r - l, b); std::fill(b + r - l, b + N, 0);
FFT<1>(a), FFT<1>(b);
for(RG int i = 0; i < N; i++) a[i] = 1ll * a[i] * b[i] % Mod;
FFT<-1>(a);
for(RG int i = mid; i < r; i++)
f[i] = (f[i] + 1ll * fac[i] * a[i - l] % Mod * invk % Mod * invn % Mod) % Mod;
Div(mid, r);
}
int n, k;
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
n = read() + 1, k = Inv(read()); invk = Inv(k - 1); fac[0] = inv[0] = 1;
for(RG int i = 1; i <= n + n; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
inv[n + n] = Inv(fac[n + n]);
for(RG int i = n + n - 1; i; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % Mod;
f[0] = 1ll * k * invk % Mod; Div(0, n);
int ans = 0;
for(RG int i = 0; i < n; i++)
ans = (ans + 1ll * read() * f[i] % Mod) % Mod;
printf("%d\n", ans);
return 0;
}
Luogu5349 幂的更多相关文章
- 【Luogu5349】幂(分治FFT)
[Luogu5349]幂(分治FFT) 题面 洛谷 题解 把多项式每一项拆出来考虑,于是等价于要求的只有\(\sum_{i=0}^\infty i^kr^i\). 令\(f(r)=\sum_{i=0} ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- POJ1026 Cipher(置换的幂运算)
链接:http://poj.org/problem?id=1026 Cipher Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...
- C语言 · 2的次幂表示
问题描述 任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001. 将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0 ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- 51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...
- UVA766 Sum of powers(1到n的自然数幂和 伯努利数)
自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...
- Codeforces632E Thief in a Shop(NTT + 快速幂)
题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...
随机推荐
- iOS - 动态库上架瘦身(去调虚拟机架构),不然验证会报错。
eg: localhost:改造 M.emor.Y$ lipo WebRTC.framework/WebRTC -thin armv7 -output WebRTC_armv7localhost:改造 ...
- 装饰器带类参数 & 一个函数应用多个装饰器
装饰器:不改变原函数的基础上,给函数增加功能的方式,称为装饰器 即:为已经存在的对象添加额外的功能 装饰器其实就是一个闭包,把一个函数当做参数后返回一个替代版的函数 decos.py:(装饰器的参数类 ...
- 将h5用HBuilderX打包成安卓app后,document.documentElement.scrollTop的值始终为0或者document.body.scrollTop始终为0
let time = setInterval(() => { let scroll = document.documentElement.scrollTop || document.body.s ...
- 怎么对ZYNQ的FCLK做时钟组约束
前言 对于包含PS和PL的设计,两者的数据交互PL必然会用到PS端的时钟. 对于FCLK(PS端时钟输入到PL端)的约束,此时钟的基础约束已在IP中产生.以下想约束其异步时钟的时钟组特性. 注意事项: ...
- java web编程 servlet2
一般在开发的过程中主要用一个doGet和doPost方法, http就是超文本传输协议,这是java API对servlet的描述 : 一般我们调用的方法细则如下 : service一分为二reque ...
- mysql死锁检查
1.查看当前数据库进程 show processlist; show full processlist; #前者只显示前100条,后者显示所有的进程 2.一键杀死某个用户的所有进程 select ...
- 自制php操作mysql工具类(DB.class.php)
DB.class.php <?php class DB{ //主机地址 var $host; //用户名 var $username; //密码 var $password; //数据库名 va ...
- 解决pycharm新建项目后按钮灰色问题
解决pycharm新建项目后按钮灰色问题 出现过多次该问题了, 在此记录一下 同样适用于导入别人的新项目后无法运行问题 原因一: pycharm没有设置系统解析器 解决方法一: 打开pycharm-& ...
- 使用git clone 出现 Permission denied 解决办法
从git复制项目到本地的一种方式是使用ssh方式,即在git bash中运行命令:git clone git@github.com:***.git 此种方式下载代码到本地的时候,可能出现Permiss ...
- 史诗级干货-python爬虫之增加CSDN访问量
史诗级干货-python爬虫之增加CSDN访问量 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net ...