题目:

#10051. 「一本通 2.3 例 3」Nikitosh 和异或

解析:

首先我们知道一个性质\(x\oplus x=0\)

我们要求$$\bigoplus_{i = l}^ra_i$$的话,相当于求$$(\bigoplus_{i = 1}^la_i)\oplus (\bigoplus_{i = 1}^ra_i)$$

所以我们维护一个异或前缀和\(sum_i\)

我们用\(l_i\)表示从左往右到第\(i\)位时的区间最大异或和

\(r_i\)表示从右往左到第\(i\)位时的区间最大异或和

显然\(l_i = max\{sum_L\oplus sum_R\}1\leq L<R\leq i\)

\(r_i\)同理

最后枚举求和\(ans=max\{ans,l_i+r_{i+1}\}\)

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 5e6 + 10; int n, m, num, ans;
int a[N], sum[N], l[N], r[N]; struct node {
int nx[2];
} e[N]; void insert(int x) {
bitset<35>b(x);
int rt = 0;
for (int i = 30; i >= 0; --i) {
int v = (int)b[i];
if (!e[rt].nx[v]) e[rt].nx[v] = ++num;
rt = e[rt].nx[v];
}
} int query(int x) {
bitset<35>b(x);
int rt = 0, ret = 0;
for (int i = 30; i >= 0; --i) {
int v = (int)b[i];
if (e[rt].nx[v ^ 1]) ret = ret << 1 | 1, rt = e[rt].nx[v ^ 1];
else ret <<= 1, rt = e[rt].nx[v];
}
return ret;
} int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i]), sum[i] = sum[i - 1] ^ a[i];
insert(0);
for (int i = 1; i <= n; ++i) {
ans = max(ans, query(sum[i]));
l[i] = ans;
insert(sum[i]);
}
num = ans = 0;
memset(e, 0, sizeof e);
for (int i = n; i >= 1; --i) {
ans = max(ans, query(sum[i]));
r[i] = ans;
insert(sum[i]);
}
ans = 0;
for (int i = 1; i < n; ++i) ans = max(ans, l[i] + r[i + 1]);
cout << ans;
}

Nikitosh 和异或(trie树)的更多相关文章

  1. 【Trie】Nikitosh 和异或

    [参考博客]: LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie [题目链接]: https://loj.ac/problem/10051 [题意]: 找出两个不相交区 ...

  2. Trie树/字典树题目(2017今日头条笔试题:异或)

    /* 本程序说明: [编程题] 异或 时间限制:1秒 空间限制:32768K 给定整数m以及n个数字A1,A2,..An,将数列A中所有元素两两异或,共能得到n(n-1)/2个结果,请求出这些结果中大 ...

  3. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  4. 【BZOJ】4260: Codechef REBXOR【Trie树】【前后缀异或最大】

    4260: Codechef REBXOR Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2218  Solved: 962[Submit][Stat ...

  5. [BZOJ4103][Thu Summer Camp 2015]异或运算 可持久化Trie树

    4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1 ...

  6. bzoj 3261: 最大异或和 (可持久化trie树)

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MB Description       给定一个非负整数序列 {a},初始长度为 N.       ...

  7. 【9.15校内测试】【寻找扩展可行域+特判】【Trie树 异或最小生成树】【模拟:)】

    之前都没做出来的同名题简直留下心理阴影啊...其实这道题还是挺好想的QAQ 可以发现,鸟可以走到的点是如下图这样扩展的: 由$(0,0)$向两边扩展,黑色是可以扩展到的点,红色是不能扩展的点,可以推出 ...

  8. BZOJ4103 [Thu Summer Camp 2015]异或运算 【可持久化trie树】

    题目链接 BZOJ4103 题解 一眼看过去是二维结构,实则未然需要树套树之类的数据结构 区域异或和,就一定是可持久化\(trie\)树 观察数据,\(m\)非常大,而\(n\)和\(p\)比较小,甚 ...

  9. 【BZOJ3261】最大异或和 Trie树+贪心

    [BZOJ3261]最大异或和 Description 给定一个非负整数序列 {a},初始长度为 N.       有   M个操作,有以下两种操作类型:1 .A x:添加操作,表示在序列末尾添加一个 ...

随机推荐

  1. 设计模式 桥梁模式 JDBC

    桥梁模式是对象的结构模式.又称为柄体(Handle and Body)模式或接口(Interface)模式.桥梁模式的用意是“将抽象化(Abstraction)与实现化(Implementation) ...

  2. Kali填坑

    Kali填坑 由于种种原因,又又又又又安了一遍虚拟机,增强功能时又又又遇到很多问题,在这里总结一下 使用apt-get install安装文件时,资源占用.描述为:E: 无法获得锁 /var/lib/ ...

  3. linux 上使用yum 安装openjdk1.8

    使用yum查找jdk: yum search java|grep jdk # yum search java|grep jdk ldapjdk-javadoc.noarch : Javadoc for ...

  4. 【Beta】Scrum meeting 6

    目录 写在前面 进度情况 任务进度表 Beta-1阶段燃尽图 遇到的困难 照片 commit记录截图 小程序前端仓库 后端代码仓库 技术博客 写在前面 例会时间:5.10 22:30-22:50 例会 ...

  5. SpringMVC(十六):如何使用编程方式替代/WEB-INF/web.xml中的配置信息

    在构建springmvc+mybatis项目时,更常用的方式是采用web.xml来配置,而且一般情况下会在web.xml中使用ContextLoaderListener加载applicationCon ...

  6. SpringMVC(十五):Dispatcher的重要组件之一MultipartResolver(StandardServletMultipartResolver和CommonsMultipartResolver)的用法

    MultipartResolver组件 从Spring官网上可以看到MultipartResolver接口的定义信息: public interface MultipartResolver A str ...

  7. poi导出word表格跨行

    DataCommon.java package com.ksource.pwlp.model.statistic; public class DataCommon { private Long id; ...

  8. 微信小程序图片宽度100%,高度自适应

    实现图片自适应,按照一般情况只需设置: img { width: 100%; height: auto; } 但是微信小程序里是特例,需要image标签上设置属性mode=widthFix,就是hei ...

  9. easyui的datagrid的使用记录

    datagrid是在 table的基础上变化而来的, 而不是在div的基础上来的. 从div来变成 datagrid,样式的设置还是是比较麻烦的. dg=datagrid 的标题 来源于 column ...

  10. postman 测试Excel文件导入导出功能

    1.导入的测试方法 选择form-data,key值填写方法对应的参数,选择File,Value处上传文件即可. 2. 导出的测试方法 在导出文件的时候,响应结果是乱码,然后在测试的时候选择下载,下载 ...