python信用评分卡(附代码,博主录制)

https://etav.github.io/python/vif_factor_python.html

Colinearity is the state where two variables are highly correlated and contain similiar information about the variance within a given dataset. To detect colinearity among variables, simply create a correlation matrix and find variables with large absolute values. In R use the corr function and in python this can by accomplished by using numpy's corrcoeffunction.

Multicolinearity on the other hand is more troublesome to detect because it emerges when three or more variables, which are highly correlated, are included within a model. To make matters worst multicolinearity can emerge even when isolated pairs of variables are not colinear.

A common R function used for testing regression assumptions and specifically multicolinearity is "VIF()" and unlike many statistical concepts, its formula is straightforward:

$$ V.I.F. = 1 / (1 - R^2). $$

The Variance Inflation Factor (VIF) is a measure of colinearity among predictor variables within a multiple regression. It is calculated by taking the the ratio of the variance of all a given model's betas divide by the variane of a single beta if it were fit alone.

Steps for Implementing VIF

  1. Run a multiple regression.
  2. Calculate the VIF factors.
  3. Inspect the factors for each predictor variable, if the VIF is between 5-10, multicolinearity is likely present and you should consider dropping the variable.
#Imports
import pandas as pd
import numpy as np
from patsy import dmatrices
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor df = pd.read_csv('loan.csv')
df.dropna()
df = df._get_numeric_data() #drop non-numeric cols df.head()
  id member_id loan_amnt funded_amnt funded_amnt_inv int_rate installment annual_inc dti delinq_2yrs ... total_bal_il il_util open_rv_12m open_rv_24m max_bal_bc all_util total_rev_hi_lim inq_fi total_cu_tl inq_last_12m
0 1077501 1296599 5000.0 5000.0 4975.0 10.65 162.87 24000.0 27.65 0.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 1077430 1314167 2500.0 2500.0 2500.0 15.27 59.83 30000.0 1.00 0.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 1077175 1313524 2400.0 2400.0 2400.0 15.96 84.33 12252.0 8.72 0.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 1076863 1277178 10000.0 10000.0 10000.0 13.49 339.31 49200.0 20.00 0.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 1075358 1311748 3000.0 3000.0 3000.0 12.69 67.79 80000.0 17.94 0.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 51 columns

df = df[['annual_inc','loan_amnt', 'funded_amnt','annual_inc','dti']].dropna() #subset the dataframe

Step 1: Run a multiple regression

%%capture
#gather features
features = "+".join(df.columns - ["annual_inc"]) # get y and X dataframes based on this regression:
y, X = dmatrices('annual_inc ~' + features, df, return_type='dataframe')

Step 2: Calculate VIF Factors

# For each X, calculate VIF and save in dataframe
vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif["features"] = X.columns

Step 3: Inspect VIF Factors

vif.round(1)
  VIF Factor features
0 5.1 Intercept
1 1.0 dti
2 678.4 funded_amnt
3 678.4 loan_amnt

As expected, the total funded amount for the loan and the amount of the loan have a high variance inflation factor because they "explain" the same variance within this dataset. We would need to discard one of these variables before moving on to model building or risk building a model with high multicolinearity.

https://study.163.com/course/courseMain.htm?courseId=1005988013&share=2&shareId=400000000398149

Variance Inflation Factor (VIF) 方差膨胀因子解释_附python脚本的更多相关文章

  1. 可决系数R^2和方差膨胀因子VIF

    然而很多时候,被筛选的特征在模型上线的预测效果并不理想,究其原因可能是由于特征筛选的偏差. 但还有一个显著的因素,就是选取特征之间之间可能存在高度的多重共线性,导致模型对测试集预测能力不佳. 为了在筛 ...

  2. GWAS: 曼哈顿图,QQ plot 图,膨胀系数( manhattan、Genomic Inflation Factor)

    画曼哈顿图和QQ plot 首推R包“qqman”,简约方便.下面具体介绍以下. 一.画曼哈顿图 install.packages("qqman") library(qqman) ...

  3. Java 序列化Serializable具体解释(附具体样例)

    Java 序列化Serializable具体解释(附具体样例) 1.什么是序列化和反序列化 Serialization(序列化)是一种将对象以一连串的字节描写叙述的过程:反序列化deserializa ...

  4. Cocos2d-x手机游戏开发与项目实践具体解释_随书代码

    Cocos2d-x手机游戏开发与项目实战具体解释_随书代码 作者:沈大海  因为原作者共享的资源为UTF-8字符编码.下载后解压在win下显示乱码或还出现文件不全问题,现完整整理,解决全部乱码问题,供 ...

  5. 杭电 2136 Largest prime factor(最大素数因子的位置)

    Largest prime factor Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)

    算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...

  7. glibc中malloc的详细解释_转

    glibc中的malloc实现: The main properties of the algorithms are:* For large (>= 512 bytes) requests, i ...

  8. cmd /c和cmd /k 解释,附★CMD命令★ 大全

    cmd /c和cmd /k http://leaning.javaeye.com/blog/380810 java的Runtime.getRuntime().exec(commandStr)可以调用执 ...

  9. c语言_文件操作_FILE结构体解释_涉及对操作系统文件FCB操作的解释_

    1. 文件和流的关系 C将每个文件简单地作为顺序字节流(如下图).每个文件用文件结束符结束,或者在特定字节数的地方结束,这个特定的字节数可以存储在系统维护的管理数据结构中.当打开文件时,就建立了和文件 ...

随机推荐

  1. 如何使用MCUXpresso IDE创建一个Cortex-M工程

    拿到Cortex-M开发板之后,就可以开始使用MCUXpresso IDE上手入门.在这个教程中,我们将详细介绍如何基于CMSIS(Cortex微控制器软件接口标准)在MCUXpresso IDE中为 ...

  2. win10 64下anaconda4.2.0(python3.5)

    python环境:win10 64下anaconda4.2.0(python3.5).安装tensorflow过程是在Anaconda Prompt中进行安装 1:打开Anaconda Prompt ...

  3. 团队作业第六次—团队Github实战训练(追光的人)

    所属课程 软件工程1916 作业要求 团队作业第六次-团队Github实战训练 团队名称 追光的人 作业目标 搭建一个相对公平公正的抽奖系统,根据QQ聊天记录,完成从统计参与抽奖人员颁布抽奖结果的基本 ...

  4. 业需软需word小技巧

    首先要看看word格式模板设计规则 一.页面材料格式模板  1. 页边距:上下边距为2.54cm:左右边距为2.8cm 2. 页眉.页脚:页眉为1.5cm:页脚为1.75cm 3. 行间距:20p行距 ...

  5. BeautifulSoup模板简单应用-提取html指定数据(api_name/api_method/api_path,请求body/请求header/pagam参数)

    from bs4 import BeautifulSoup import re import os.path import itertools name='newcrm' source_file_pa ...

  6. Docker 安装mysql、oracle

    来源:唐山网站优化 Docker 安装mysql.oracle 使用ssh工具登录docker docker 的ip一般默认为192.168.99.100可以通过安装docker-machine之后, ...

  7. 域渗透:LSA Protection

    简介:微软在 2014 年 3 月 12 日添加了 LSA 保护策略,用来防止对进程 lsass.exe 的代码注入,这样一来就无法使用 mimikatz 对 lsass.exe 进行注入,相关操作也 ...

  8. [NgRx] Optimistically Editing Entity Data

    First thing first, let's define a action to update entity: import { createAction, props } from " ...

  9. jsp实现大文件上传分片上传断点续传

    1,项目调研 因为需要研究下断点上传的问题.找了很久终于找到一个比较好的项目. 在GoogleCode上面,代码弄下来超级不方便,还是配置hosts才好,把代码重新上传到了github上面. http ...

  10. RookeyFrame 信息 常用信息整理

    博客 https://www.cnblogs.com/rookey/ gitee的地址: https://gitee.com/rookey/Rookey.Frame-v2.0 https://gite ...