[BZOJ3681]Arietta(可持久化线段树合并优化建图+网络流)
暴力建图显然就是S->i连1,i->j'连inf(i为第j个力度能弹出的音符),j'->T连T[j]。
由于是“某棵子树中权值在某区间内的所有点”都向某个力度连边,于是线段树优化建图。由于是在树上所以需要可持久化线段树合并。
理论上可能空间会被卡,但是实际上并不能卡掉,边数最大点都不超过100W。
相比之下不太清楚为什么网上的dsu on tree做法为什么理论上就能过(可能是常数问题?),以及不理解为什么不用普通的启发式合并而非要用轻重链剖分。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=,M=,inf=1e9;
int n,m,S,T,nd,l,r,d,t,fa[N],a[N],rt[M],ls[M],rs[M],cur[M],q[M],dis[M];
int cnt=,cnt2,h[M],to[M<<],nxt[M<<],fl[M<<],h2[N],to2[N],nxt2[N]; void add(int u,int v,int w){
to[++cnt]=v; fl[cnt]=w; nxt[cnt]=h[u]; h[u]=cnt;
to[++cnt]=u; fl[cnt]=; nxt[cnt]=h[v]; h[v]=cnt;
} void add2(int u,int v){ to2[++cnt2]=v; nxt2[cnt2]=h2[u]; h2[u]=cnt2; } bool bfs(){
rep(i,,nd) dis[i]=; q[]=S; dis[S]=;
for (int st=,ed=; st!=ed; ){
int x=q[++st];
For(i,x) if (fl[i] && !dis[k=to[i]]) dis[k]=dis[x]+,q[++ed]=k;
}
return dis[T];
} int dfs(int x,int lim){
if (x==T) return lim;
int c=;
for (int &i=cur[x],k; i; i=nxt[i])
if (fl[i] && dis[k=to[i]]==dis[x]+){
int t=dfs(k,min(lim-c,fl[i]));
c+=t; fl[i]-=t; fl[i^]+=t;
if (c==lim) return c;
}
if (!c) dis[x]=-;
return c;
} int dinic(){
int ans=;
while (bfs()){
rep(i,,nd) cur[i]=h[i];
ans+=dfs(S,inf);
}
return ans;
} void ins(int &x,int L,int R,int p,int k){
x=++nd;
if (L==R){ add(k,x,inf); return; }
int mid=(L+R)>>;
if (p<=mid) ins(ls[x],L,mid,p,k); else ins(rs[x],mid+,R,p,k);
if (ls[x]) add(ls[x],x,inf);
if (rs[x]) add(rs[x],x,inf);
} void link(int x,int L,int R,int l,int r,int k){
if (!x) return;
if (L==l && r==R){ add(x,k,inf); return; }
int mid=(L+R)>>;
if (r<=mid) link(ls[x],L,mid,l,r,k);
else if (l>mid) link(rs[x],mid+,R,l,r,k);
else link(ls[x],L,mid,l,mid,k),link(rs[x],mid+,R,mid+,r,k);
} int merge(int x,int y,int L,int R){
if (!x || !y) return x+y;
int mid=(L+R)>>,k=++nd;
if (L==R){ add(x,k,inf); add(y,k,inf); return k; }
ls[k]=merge(ls[x],ls[y],L,mid);
rs[k]=merge(rs[x],rs[y],mid+,R);
if (ls[k]) add(ls[k],k,inf);
if (rs[k]) add(rs[k],k,inf);
return k;
} void dfs(int x){
ins(rt[x],,n,a[x],x);
for (int i=h2[x],k; i; i=nxt2[i])
dfs(k=to2[i]),rt[x]=merge(rt[x],rt[k],,n);
} int main(){
freopen("bzoj3681.in","r",stdin);
freopen("bzoj3681.out","w",stdout);
scanf("%d%d",&n,&m); S=n+m+; nd=T=n+m+;
rep(i,,n) scanf("%d",&fa[i]),add2(fa[i],i);
rep(i,,n) scanf("%d",&a[i]),add(S,i,);
dfs();
rep(i,,m){
scanf("%d%d%d%d",&l,&r,&d,&t);
link(rt[d],,n,l,r,i+n); add(i+n,T,t);
}
printf("%d\n",dinic());
return ;
}
[BZOJ3681]Arietta(可持久化线段树合并优化建图+网络流)的更多相关文章
- 【BZOJ3681】Arietta 树链剖分+可持久化线段树优化建图+网络流
[BZOJ3681]Arietta Description Arietta 的命运与她的妹妹不同,在她的妹妹已经走进学院的时候,她仍然留在山村中.但是她从未停止过和恋人 Velding 的书信往来.一 ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- BZOJ 4771 七彩树(可持久化线段树合并)
题意 https://www.lydsy.com/JudgeOnline/problem.php?id=4771 思路 和 HDU 3333 其实有点像,不过是把序列的问题放在了树上,多维护一个深度即 ...
- BZOJ - 4771 七彩树 (可持久化线段树合并)
题目链接 对每个结点建立两棵线段树,一棵记录该结点的子树下每种颜色对应的最小深度,另一棵记录子树下的每个深度有多少结点(每种颜色的结点只保留最浅的深度即可),自底而上令父节点继承子结点的线段树,如果合 ...
- 【NOI2019】弹跳(KDT优化建图)
Description 平面上有 \(n\) 个点,分布在 \(w \times h\) 的网格上.有 \(m\) 个弹跳装置,由一个六元组描述.第 \(i\) 个装置有参数:\((p_i, t_i, ...
- CF786B Legacy(线段树优化建图)
嘟嘟嘟 省选Day1T2不仅考了字符串,还考了线段树优化建图.当时不会,现在赶快学一下. 线段树能优化的图就是像这道题一样,一个点像一个区间的点连边,或一个区间像一个点连边.一个个连就是\(O(n ^ ...
- BZOJ5461 PKUWC2018Minimax(概率期望+线段树合并+动态规划)
离散化后,容易想到设f[i][j]为i节点权值为j的概率,不妨设j权值在左子树,则有f[i][j]=f[lson][j](pi·f[rson][1~j]+(1-pi)·f[rson][j~m]). 考 ...
- [NOI2018]你的名字(SAM+线段树合并)
考虑l=1,r=n的68分,对S和T建SAM,对T的SAM上的每个节点,计算它能给答案带来多少贡献. T上节点x代表的本质不同的子串数为mx[x]-mx[fa[x]],然后需要去掉所代表子串与S的最长 ...
- uoj#388. 【UNR #3】配对树(线段树合并)
传送门 先考虑一个贪心,对于一条边来说,如果当前这个序列中在它的子树中的元素个数为奇数个,那么这条边就会被一组匹配经过,否则就不会 考虑反证法,如果在这条边两边的元素个数都是偶数,那么至少有两组匹配经 ...
随机推荐
- 都2019年了,Java为什么还在坚持多线程不选择协程?
都2019年了,Java为什么还在坚持多线程不选择协程? - 知乎 https://www.zhihu.com/question/332042250/answer/734051666
- QEMU命令配置虚拟机网络的用户模式
QEMU缺省使用“-net nic-net user”参数为客户机配置网络,提供了一种用户模式( user-mode)的网络模拟.使用用户模式的客户机可以连通宿主机及外部网络.用户模式网络完全由QEM ...
- centos下如何开放某个端口?
命令如下: firewall-cmd --permanent --add-port=/tcp (开放22端口) firewall-cmd --reload
- IDEA中spring约束文件报红 的解决办法
- 使用navicat的坑
小黄人发送数据,测试软件是否将数据存入mysql数据库中,使用的是navicat. 首先截断了表,所有数据清零,但是此时表并没有回到第一页[由于前面查看最新数据,已经翻到了最后一页],然后小黄人发数据 ...
- 宣化上人:大佛顶首楞严经四种清净明诲浅释(6-7)(转自学佛网:http://www.xuefo.net/nr/article23/230700.html)
大佛顶首楞严经四种清净明诲浅释(6) 唐天竺·沙门般剌密帝译 宣化上人主讲 一九八三年四月十七日晚讲于万佛圣城 是故阿难!若不断杀修禅定者,譬如有人,自塞其耳,高声大叫,求人不闻,此等名为欲隐弥露.清 ...
- Day1作业2:多层菜单查询
流程图: code: #!/usr/bin/env python # encoding: utf-8 # Auther:ccorz Mail:ccniubi@163.com Blog:http://w ...
- C#中,子线程与主线程之间的通信是如何实现(转)
注: 项目中按照这个方法调试成功: 通常我们会有这种需求: 一个支持慢速设备的处理类,如网络通信.串口通信.打印等 此时经常需要将线程封装在类里面,让类支持异步处理,然后发布事件或者回调委托通知主线程 ...
- Python - Django - 静态文件相关
静态文件的路径设置在 settings.py 中 如果该路径发生更改的话,html 中相关路径也要进行修改 CSS: <link href="/static/dashboard.css ...
- js中的eval方法
eval(string) eval函数接收一个参数string,如果string不是字符串,则直接返回string.否则执行string语句.如果string语句执行结果是一个值,则返回此值,否则返回 ...