版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/dcrmg/article/details/79091941

tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置:

config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存
sess = tf.Session(config=config)

1. 记录设备指派情况 :  tf.ConfigProto(log_device_placement=True)

设置tf.ConfigProto()中参数log_device_placement = True ,可以获取到 operations 和 Tensor 被指派到哪个设备(几号CPU或几号GPU)上运行,会在终端打印出各项操作是在哪个设备上运行的。

2. 自动选择运行设备 : tf.ConfigProto(allow_soft_placement=True)

在tf中,通过命令 "with tf.device('/cpu:0'):",允许手动设置操作运行的设备。如果手动设置的设备不存在或者不可用,就会导致tf程序等待或异常,为了防止这种情况,可以设置tf.ConfigProto()中参数allow_soft_placement=True,允许tf自动选择一个存在并且可用的设备来运行操作。

3. 限制GPU资源使用:

为了加快运行效率,TensorFlow在初始化时会尝试分配所有可用的GPU显存资源给自己,这在多人使用的服务器上工作就会导致GPU占用,别人无法使用GPU工作的情况。

tf提供了两种控制GPU资源使用的方法,一是让TensorFlow在运行过程中动态申请显存,需要多少就申请多少;第二种方式就是限制GPU的使用率。

一、动态申请显存

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)

二、限制GPU使用率

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存
session = tf.Session(config=config)

或者:

gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
config=tf.ConfigProto(gpu_options=gpu_options)
session = tf.Session(config=config)

设置使用哪块GPU

方法一、在python程序中设置:

os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用 GPU 0
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 使用 GPU 0,1

方法二、在执行python程序时候:

CUDA_VISIBLE_DEVICES=0,1 python yourcode.py

推荐使用更灵活一点的第二种方法。

tf.Session()函数的参数应用(tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定)的更多相关文章

  1. Tensorflow中的tf.argmax()函数

    转载请注明出处:http://www.cnblogs.com/willnote/p/6758953.html 官方API定义 tf.argmax(input, axis=None, name=None ...

  2. tensorflow中共享变量 tf.get_variable 和命名空间 tf.variable_scope

    tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get ...

  3. tensorflow中使用tf.variable_scope和tf.get_variable的ValueError

    ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...

  4. [转载]tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定

    tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...

  5. tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定

    tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...

  6. TensorFlow 中的 tf.train.exponential_decay() 指数衰减法

    exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 使 ...

  7. 使用tf.ConfigProto()配置Session运行参数和GPU设备指定

    参考链接:https://blog.csdn.net/dcrmg/article/details/79091941 tf.ConfigProto()函数用在创建session的时候,用来对sessio ...

  8. tensorflow中的tf.app.run()的使用

    指明函数的入口,即从哪里执行函数. 如果你的代码中的入口函数不叫main(),而是一个其他名字的函数,如test(),则你应该这样写入口tf.app.run(test()) 如果你的代码中的入口函数叫 ...

  9. [转]Magento 2中文文档教程 - 配置和运行cron(定时任务)

    本文转自:https://blog.csdn.net/xz_src/article/details/72793476 cron(定时任务)概述 Magento 2 有许多功能需要用到cron(定时任务 ...

随机推荐

  1. jersey实现RESTful接口PUT方法JSON数据传递

    项目中使用的是org.json包 maven中的配置如下: xml <!-- https://mvnrepository.com/artifact/org.json/json --> &l ...

  2. 逆向破解之160个CrackMe —— 010-011

    CrackMe —— 010 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...

  3. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  4. chrom代理插件

    1.SwitchyOmega 2.Resource Override

  5. 使用node.js的http-server开启一个本地服务器

    用html写了一个网页,想要在手机上查看适配效果,但是苦于手机上没有直接查看HTML的.想到手机和电脑都在一个局域网内,能不能搭建一个局域网内的网页服务器呢? 1.下载 http-server 显然, ...

  6. 【转】为什么要重写hashcode()方法和toString()方法

    Object 类 包含toString()和hashCode()方法. 一.toString(): 在Object类里面定义toString()方法的时候返回的对象的哈希code码,这个hashcod ...

  7. [LeetCode] 650. 2 Keys Keyboard 两键的键盘

    Initially on a notepad only one character 'A' is present. You can perform two operations on this not ...

  8. Spring Boot中整合Sharding-JDBC单库分表示例

    本文是Sharding-JDBC采用Spring Boot Starter方式配置第二篇,第一篇是读写分离讲解,请参考:<Spring Boot中整合Sharding-JDBC读写分离示例> ...

  9. springcloud2.x之management.security.enabled=false报错处理

    1. springcloud1.5.x的消息总线配置是 # RabbitMq的地址.端口,用户名.密码 spring.rabbitmq.host=localhost spring.rabbitmq.p ...

  10. loj 2719 「NOI2018」冒泡排序 - 组合数学

    题目传送门 传送门 题目大意 (相信大家都知道) 显然要考虑一个排列$p$合法的充要条件. 考虑这样一个构造$p$的过程.设排列$p^{-1}_{i}$满足$p_{p^{-1}_i} = i$. 初始 ...