Electrification Plan 最小生成树(prim+krusl+堆优化prim)
题意:
无向图,给n个城市,n*n条边,每条边都有一个权值 代表修路的代价,其中有k个点有发电站,给出这k个点的编号,要每一个城市都连到发电站,问最小的修路代价。
思路:
prim:把发电站之间e[i][j]都设置为0,然后模板套进去就行。
krusl:把所有的发电站都先弄进一个并查集(做法比较机智,先拿其中一个发电站,把剩下的发电站分别与这个发电站找父节点,分别弄进并查集就行)。 然后按权值从小到大 排序,不是同一个并查集的就sum+=,再弄进并查集。
复杂度O(n*n)
#include<iostream>
#include<cstdio>
#include <cctype>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define ll long long
#define mem(a,x) memset(a,x,sizeof(a))
#define se second
#define fi first
const ll mod=;
const int INF= 0x3f3f3f3f;
const int N=2e5+; int n,m;
int e[][];
int b[],dis[],vis[]; void prim()
{
for(int i=;i<=n;i++)
{
vis[i]=;
dis[i]=e[][i];
}
int u,minn,sum=;
vis[]=;
for(int i=;i<n;i++)
{
minn=INF;
for(int j=;j<=n;j++)
{
if(!vis[j] && minn>dis[j])
{
u=j;
minn=dis[j];
}
}
vis[u]=;
sum+=minn;
for(int j=;j<=n;j++)
{
if(!vis[j] && e[u][j]<dis[j])
dis[j]=e[u][j];
}
}
printf("%d\n",sum);
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i==j) e[i][j]=;
else e[i][j]=INF; for(int i=;i<=m;i++) scanf("%d",&b[i]); for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&e[i][j]);
}
} for(int i=;i<=m;i++)
for(int j=;j<=m;j++)
e[b[i]][b[j]]=; prim();
}
朴素prim做法
复杂度O(mlogm)
#include<iostream>
#include<cstdio>
#include <cctype>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define ll long long
#define mem(a,x) memset(a,x,sizeof(a))
#define se second
#define fi first
const ll mod=;
const int INF= 0x3f3f3f3f;
const int N=2e5+; int f[N],n,m;
struct edge
{
int u,v,w;
}e[N]; bool cmp(edge x,edge y)
{
return x.w<y.w;
} int getf(int x)
{
if(x!=f[x])
f[x]=getf(f[x]);
return f[x];
}
int krusl(int num)
{
int fa,fb,sum=,cnt=;
for(int i=;i<=num;i++)
{
fa=getf(e[i].u);
fb=getf(e[i].v);
if(fa!=fb)
{
f[fa]=fb;
sum+=e[i].w;
cnt++;
}
if(cnt==n-m) break;
}
return sum;
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++) f[i]=i; int q;
cin>>q; //拿q与其他所有的发电站都连接起来
for(int i=;i<=m;i++)
{
int fa,fb,a;
cin>>a;
fa=getf(a);
fb=getf(q);
if(fa!=fb)
f[fa]=fb;
}
int cnt=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
e[++cnt].u=i;
e[cnt].v=j;
scanf("%d",&e[cnt].w);
}
}
sort(e+,e++cnt,cmp); cout<<krusl(cnt)<<endl; }
krusl做法
复杂度O(mlogm)
#include<iostream>
#include<cstdio>
#include <cctype>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define ll long long
#define mem(a,x) memset(a,x,sizeof(a))
#define se second
#define fi first
const ll mod=;
const int INF= 0x3f3f3f3f;
const int N=2e5+; int n,m;
int vis[N];
struct edge
{
int u,v,w;
bool operator<(const edge &r)const{ //priority_queue中用
return r.w<w;
}
edge(int _v,int _w):v(_v),w(_w){} //vector中用
};
vector<edge> ve[N]; void prim()
{
priority_queue<edge> q;
for(int i=;i<ve[].size();i++)
q.push(ve[][i]);
int cnt=n-,sum=;
vis[]=;
while(!q.empty() && cnt)
{
edge cur=q.top();
q.pop();
while(vis[cur.v])
{
cur=q.top();
q.pop();
}
sum+=cur.w;
vis[cur.v]=;
for(int i=;i<ve[cur.v].size();i++)
{
if(!vis[ ve[cur.v][i].v ] )
q.push(ve[cur.v][i]);
}
cnt--;
}
printf("%d\n",sum);
}
int main()
{
int u,v,w;
cin>>n>>m;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
ve[u].push_back(edge(v,w));
ve[v].push_back(edge(u,w));
}
prim();
}
prim堆优化
题意:
毒气炸弹需要 k 种不同类型元素构成,Applese一共有 n 瓶含有这些元素的试剂。 已知元素混合遵循 m 条规律,每一条规律都可以用 "x y c" 描述。表示将第 x 瓶试剂混入第 y 瓶试剂或者把第 y 瓶试剂混入第 x 瓶试剂,需要消耗 c 的脑力。特别地,除了这 m 条规律外,Applese 可以将任意两瓶相同元素的试剂混合,且不需要消耗脑力。Applese 想要配出毒气炸弹,就需要使 S 中含有 这 k 种元素。它想知道自己最少花费多少脑力可以把毒气炸弹做出来。
思路:
和上面题目类似。把所有相同的加入同一个并查集。
#include<iostream>
#include<cstdio>
#include <cctype>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define ll long long
#define mem(a,x) memset(a,x,sizeof(a))
#define se second
#define fi first
const ll mod=;
const int INF= 0x3f3f3f3f;
const int N=2e5+; int f[N],n,m,k;
struct edge
{
int u,v,w;
}e[N]; struct node
{
int pp, vv;
}a[N]; bool cmp(edge x,edge y)
{
return x.w<y.w;
}
bool cmp2(node x,node y)
{
return x.vv<y.vv;
}
int getf(int x)
{
if(x!=f[x])
f[x]=getf(f[x]);
return f[x];
}
ll krusl(int num)
{
int fa,fb,cnt=;
ll sum=;
for(int i=;i<=num;i++)
{
fa=getf(e[i].u);
fb=getf(e[i].v);
if(fa!=fb)
{
f[fa]=fb;
sum+=1LL*e[i].w;
cnt++;
}
if(cnt==k-) break;
}
if(cnt!=k-) return -;
else return sum;
}
int main()
{
cin>>n>>m>>k;
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<=n;i++) scanf("%d",&a[i].vv),a[i].pp=i;
sort(a+,a++n,cmp2);
int q;
int fa,fb;
int j=;
for(int i=;i<=k;i++)
{
if(a[j].vv ==i)
{
q=a[j].pp;
j++;
while(a[j].vv==i)
{
fa=getf(a[j].pp);
fb=getf(q);
if(fa!=fb)
f[fa]=fb;
j++;
}
}
}
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
}
sort(e+,e++m,cmp); printf("%lld\n",krusl(m)); }
krusl
Electrification Plan 最小生成树(prim+krusl+堆优化prim)的更多相关文章
- dijkstra(最短路)和Prim(最小生成树)下的堆优化
dijkstra(最短路)和Prim(最小生成树)下的堆优化 最小堆: down(i)[向下调整]:从第k层的点i开始向下操作,第k层的点与第k+1层的点(如果有)进行值大小的判断,如果父节点的值大于 ...
- hiho一下 第二十九周 最小生成树三·堆优化的Prim算法【14年寒假弄了好长时间没搞懂的prim优化:prim算法+堆优化 】
题目1 : 最小生成树三·堆优化的Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 回到两个星期之前,在成功的使用Kruscal算法解决了问题之后,小Ho产生 ...
- 求最小生成树(暴力法,prim,prim的堆优化,kruskal)
求最小生成树(暴力法,prim,prim的堆优化,kruskal) 5 71 2 22 5 21 3 41 4 73 4 12 3 13 5 6 我们采用的是dfs的回溯暴力,所以对于如下图,只能搜索 ...
- P3366 【模板】最小生成树(堆优化prim)
堆优化prim #include<cstdio> #include<cstring> #include<queue> using namespace std; st ...
- bzoj1601 / P1550 [USACO08OCT]打井Watering Hole(堆优化prim)
P1550 [USACO08OCT]打井Watering Hole 对于自己建水库的情况,新建一个虚拟结点,和其他点的边权即为自建水库的费用 这样问题就转化为一个裸最小生成树问题了. 这里用堆优化 ...
- prim最小生成树算法(堆优化)
prim算法原理和dijkstra算法差不多,依然不能处理负边 1 #include<bits/stdc++.h> 2 using namespace std; 3 struct edge ...
- Prim算法堆优化
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <ctype.h> ...
- timus 1982 Electrification Plan(最小生成树)
Electrification Plan Time limit: 0.5 secondMemory limit: 64 MB Some country has n cities. The govern ...
- 堆优化Prim 最小生成树 模板
#include <bits/stdc++.h> using namespace std; const int MAXN = 5005; const int MAXM = 200005; ...
随机推荐
- [Python] 项目的配置覆盖与合并
参考来源: https://www.liaoxuefeng.com/wiki/1016959663602400/1018490750237280 代码稍微修改了一下 import os import ...
- 【NPDP笔记】第二章 组合管理
2.1 什么是产品组合 Product Portfolio 什么是组合管理,讲述的是完成正确的项目, 五大目标 财务稳健,财务目标 管道平衡,资源需求与可用资源之间的平衡 战略协同,与经营战略 组织战 ...
- nginx配置优化提高并发量
1 nginx配置优化提高并发量 worker_processes 2; 这个按照CPU的核数来决定 2 worker_connections 65535; 这个一般设置65535即可 每个进程允许的 ...
- Python Tkinter的学习
Tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口.Tk和Tkinter可以在大多数的Unix平台下使用,同样可以应用在Windows和Macinto ...
- Golang 读写文件
读文件 func ReadFile_v1(filename string) { var ( err error content []byte ) fileObj,err := os.Open(file ...
- GoLang的概述
GoLang的概述 1.什么是程序 完成某个功能的指令的集合 2.Go语言的诞生小故事 2.1. 开发团队-三个大牛 2.2.Google创造Golang的原因 2.3.Golang 的发展历程 20 ...
- Linux RedHat 7 配置本地 YUM源
尽管RPM安装方法能够帮助用户查询软件相关的依赖关系,但是还是需要安装人员自己来解决,而且有些大型软件可能与数十个程序都有依赖关系,在这种情况下安装软件事件非常痛苦和耗费事件的事情,而Yum软件仓库可 ...
- 定时任务-Windows任务
定时任务-Windows任务 什么是windows任务 windows系统自带一个任务管理组件.可以执行自己写的程序,发送电子邮件(需要邮件服务器),显示消息(就是桌面弹出一个窗口).用的最多的就 ...
- Golang中的RegExp正则表达式用法指南
------------------------------------------------------------ Golang中的正则表达式 ------------------------- ...
- requirejs:模块加载(require)及定义(define)时的路径理解
给新来的实习生普及下JS基本知识,看到比较好的文章 转载https://blog.csdn.net/xuxiaoping1989/article/details/52384778 接触过require ...