Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.

Example 1:

0        3

|          |

1 --- 2    4

Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.

Example 2:

0         4

|           |

1 --- 2 --- 3

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.

Note:

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

这道题和305. numbers of islands II 是一个思路,一个count初始化为n,union find每次有新的edge就union两个节点,如果两个节点(u, v)原来不在一个连通图里面就减少count并且连起来,如果原来就在一个图里面就不管。用一个索引array来做,union find优化就是加权了,每次把大的树的root当做parent,小的树的root作为child。

Java:

public class Solution {
public int countComponents(int n, int[][] edges) {
int count = n;
// array to store parent
init(n, edges);
for(int[] edge : edges) {
int root1 = find(edge[0]);
int root2 = find(edge[1]);
if(root1 != root2) {
union(root1, root2);
count--;
}
}
return count;
} int[] map;
private void init(int n, int[][] edges) {
map = new int[n];
for(int[] edge : edges) {
map[edge[0]] = edge[0];
map[edge[1]] = edge[1];
}
} private int find(int child) {
while(map[child] != child) child = map[child];
return child;
} private void union(int child, int parent) {
map[child] = parent;
}
}

Python:

# Time:  O(nlog*n) ~= O(n), n is the length of the positions
# Space: O(n) class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n def find_set(self, x):
if self.set[x] != x:
self.set[x] = self.find_set(self.set[x]) # path compression.
return self.set[x] def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root != y_root:
self.set[min(x_root, y_root)] = max(x_root, y_root)
self.count -= 1 class Solution(object):
def countComponents(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: int
"""
union_find = UnionFind(n)
for i, j in edges:
union_find.union_set(i, j)
return union_find.count

  

类似题目:

[LeetCode] 547. Friend Circles 朋友圈

[LeetCode] 200. Number of Islands 岛屿的数量

[LeetCode] 305. Number of Islands II 岛屿的数量 II

Find minimum number of people to reach to spread a message across all people in twitter

All LeetCode Questions List 题目汇总

  

[LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数的更多相关文章

  1. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  2. LeetCode 323. Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  3. 323. Number of Connected Components in an Undirected Graph (leetcode)

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...

  5. 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集

    [抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...

  6. 323. Number of Connected Components in an Undirected Graph

    算连接的..那就是union find了 public class Solution { public int countComponents(int n, int[][] edges) { if(e ...

  7. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  8. Number of Connected Components in an Undirected Graph -- LeetCode

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  9. [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. 动态生成16位不重复随机数、随机创建2位ID

    /** 1. * 动态生成16位不重复随机数 * * @return */ public synchronized static String generate16() { StringBuffer ...

  2. 基于源代码为树莓派设备构建 TensorFlow

    本指南为运行 Raspbian 9.0 操作系统的 Raspberry Pi 嵌入式设备构建 TensorFlow.虽然这些说明可能也适用于其他系列的 Raspberry Pi 设备,但它仅针对此文中 ...

  3. Python 简单批量请求接口实例

    #coding:utf-8 ''' Created on 2017年11月10日 @author: li.liu ''' import urllib import time str1=''' http ...

  4. C++中的类所占内存空间总结(转)

    类所占内存的大小是由成员变量(静态变量除外)决定的,成员函数(这是笼统的说,后面会细说)是不计算在内的. 摘抄部分: 成员函数还是以一般的函数一样的存在.a.fun()是通过fun(a.this)来调 ...

  5. 关于AndroidStudio项目app在手机上运行遇到登录网络问题的解决

    又得提到我熟悉的12月份末尾,依旧想着把自己遇到的问题给大家看看,顺便分享我的解决办法. 看过我第一个发的随笔就知道,我遇到过给项目app打包成apk的问题啊,虽然解决了,但是运行到手机上 就又出现了 ...

  6. LOJ P10002 喷水装置 题解

    每日一题 day35 打卡 Analysis 先将不符合条件的区间去掉(即半径小于W,不然宽度无法符合),将符合条件的按区间存入节点中.区间的左边界是x-sqrt(r*r-W*W/4.0),要计算x轴 ...

  7. 关于H5判定区域里面滑动到底部,加载更多的总结

    1.如何判定H5中滑动到底部,然后加载更多的功能实现. 思路:我们需要设定一个固定高度的盒子,然后我们利用scroll来监听滚动,当scrollTop(滚动的距离) + clientHeight(页面 ...

  8. 从TEB到PEB再到SEH(二)

    什么是SEH? SEH( Structured Exception Handling , 结构化异常处理 ) 结构化异常处理(SEH)是Windows操作系统提供的强大异常处理功能.而Visual C ...

  9. apache-tomcat安装

    1.下载apache-tomcat 网址:http://tomcat.apache.org 下载 tomcat 9.0.29 2.解压后设置控制台显示中文不乱码 在 apache-tomcat-9.0 ...

  10. AGC028 E - High Elements

    AGC028 E - High Elements 有一个排列\(p\),你要分成两个子序列\(A,B\),满足\(A,B\)的LIS长度相等.设\(S\)是一个\(01\)序列,\(S_i=0\)当且 ...