P1144 最短路计数

题目描述

给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\)。问从顶点\(1\)开始,到其他每个点的最短路有几条。

输入格式

第一行包含\(2\)个正整数\(N,M\),为图的顶点数与边数。

接下来\(M\)行,每行\(2\)个正整数\(x,y\),表示有一条顶点\(x\)连向顶点\(y\)的边,请注意可能有自环与重边。

输出格式

共NN行,每行一个非负整数,第ii行输出从顶点11到顶点ii有多少条不同的最短路,由于答案有可能会很大,你只需要输出\(ans \bmod 100003\)后的结果即可。如果无法到达顶点\(i\)则输出\(0\)。

输入输出样例

输入 #1

5 7

1 2

1 3

2 4

3 4

2 3

4 5

4 5

输出 #1

1

1

1

2

4

说明/提示

\(1\)到\(5\)的最短路有\(4\)条,分别为\(2\)条\(1-2-4-5\)和\(2\)条\(1-3-4-5\)(由于\(4-5\)的边有\(2\)条)。

对于\(20\%\)的数据,\(N ≤ 100\);

对于\(60\%\)的数据,\(N ≤ 1000\);

对于\(100\%\)的数据,\(N<=1000000,M<=2000000\)。

【思路】

最短路 , dijkstra

【题目大意】

从1到每一个点的最短路有多少条

【核心思路】

最短路有多少条?

完全可以在dijkstra或者SPFA的过程中求出来的

因为在松弛操作的时候

用y到x的边去松弛

如果这条边替换上去会使1到x的距离更近

那这个时候x的答案就会变为松到他y的最短路的个数

如果这条边替换上去和原来一样

那就是目前看来可以当做最短路

在x原来最短路个数的基础上加上到点y最短路的个数就可以了

【完整代码】

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring> using namespace std; int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9')
{
if(c == '-')fg = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
{
sum = sum * 10 + c - '0';
c = getchar();
}
return sum * fg;
}
const int Max = 2000006;
const int mo = 100003;
struct node
{
int y,ne;
}a[Max << 1];
int head[Max >> 1],sum = 0; void add(int x,int y)
{
a[++ sum].y = y;
a[sum].ne = head[x];
head[x] = sum;
} struct point
{
int x;
int w;
bool operator < (const point xx) const
{
return xx.w < w;
}
};
int dis[Max >> 1];
priority_queue<point>q;
int ans[Max >> 1];
bool use[Max >> 1];
void dj()
{
memset(dis,0x3f,sizeof(dis));
dis[1] = 0;
ans[1] = 1;
q.push((point){1,0});
while(!q.empty())
{
point qwq = q.top();
q.pop();
int x = qwq.x,w = qwq.w;
if(use[x] == true)
continue;
else
use[x] = true;
for(register int i = head[x];i != 0;i = a[i].ne)
{
int awa = a[i].y;
if(dis[awa] > dis[x] + 1)
{
dis[awa] = dis[x] + 1;
ans[awa] = ans[x];
if(use[awa] == false)
q.push((point){awa,dis[awa]});
}
else
if(dis[awa] == dis[x] + 1)
{
ans[awa] += ans[x];
ans[awa] %= mo;
}
}
}
} int main()
{
int n = read(),m = read();
for(register int i = 1;i <= m;++ i)
{
int x = read(),y = read();
add(x,y);
add(y,x);
}
dj();
for(register int i = 1;i <= n;++ i)
cout << ans[i] << endl;
return 0;
}

洛谷 P1144 最短路计数 题解的更多相关文章

  1. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  2. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  3. 洛谷——P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  4. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  5. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

  6. 洛谷 P1144 最短路计数

    传送门:https://www.luogu.org/problemnew/show/P1144 这虽然是一道普及+的题,然而我发现我现在还没做过,这也就直接导致我今天模拟T2只杠了个暴力分…… 那这道 ...

  7. 洛谷P1144——最短路计数

    题目:https://www.luogu.org/problemnew/show/P1144 spfa跑最短路的同时记录cnt数组表示到达方案数. 代码如下: #include<iostream ...

  8. 洛谷P1144 最短路计数【堆优化dijkstra】

    题目:https://www.luogu.org/problemnew/show/P1144 题意:问1到各个节点的最短路有多少条. 思路:如果松弛的时候发现是相等的,说明可以经过该点的最短路径到达当 ...

  9. 洛谷 P1144 最短路计数 Label:水

    题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行 ...

随机推荐

  1. VSCode 命令

    淘宝 NPM 镜像     https://npm.taobao.org/ Ctrl+~   显示终端 npm start    启动项目 cnpm install   安装模块

  2. Matlab访问者模式

    访问者(Visitor)模式的定义:将作用于某种数据结构中的各元素的操作分离出来封装成独立的类,使其在不改变数据结构的前提下可以添加作用于这些元素的新的操作,为数据结构中的每个元素提供多种访问方式.它 ...

  3. HTTP发展简史

    HTTP发展简史 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的 ...

  4. webpack 入门和常用插件的使用

    常用配置参数 module.exports = { context: path.resolve(__dirname, '../'), entry: { app: './src/main.js' }, ...

  5. JavaScript设计模式与开发实践随笔(三)

    封装 1. 封装数据 a)      只能依赖变量的作用域来实现封装特性,es6中可以通过symbol创建私有属性 var myObject = (function(){ var __name = ' ...

  6. 【译】itertools

    1.Itertools模块迭代器的种类 1.1  无限迭代器: 迭代器 参数 结果 示例 count() start, [step] start, start+step, start+2*step, ...

  7. adb shell get/setprop, setenforce...

    adb shell getprop <key> 获取设备参数信息adb shell setprop <key> <value> 设置设备参数信息 例子1:>C ...

  8. Unity手游汉化笔记②:使用UABE替换TTF字体

    总的笔记:https://www.cnblogs.com/guobaoxu/p/12055930.html 目录 一.分析 二.思路 三.具体实践 四.总结 Unity版本:2018.4.5f1 工具 ...

  9. OCR3:tesseract script

    通过命令:tesseract -h 可查看 OCR操作脚本参数: 其中参数说明: –-oem:指定使用的算法,0:代表老的算法:1:代表LSTM算法:2:代表两者的结合:3:代表系统自己选择. –-p ...

  10. Centos7无法使用ssh登陆及解决方案

    查看状态: systemctl status sshd.service 启动服务: systemctl start sshd.service 重启服务: systemctl restart sshd. ...