P1144 最短路计数

题目描述

给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\)。问从顶点\(1\)开始,到其他每个点的最短路有几条。

输入格式

第一行包含\(2\)个正整数\(N,M\),为图的顶点数与边数。

接下来\(M\)行,每行\(2\)个正整数\(x,y\),表示有一条顶点\(x\)连向顶点\(y\)的边,请注意可能有自环与重边。

输出格式

共NN行,每行一个非负整数,第ii行输出从顶点11到顶点ii有多少条不同的最短路,由于答案有可能会很大,你只需要输出\(ans \bmod 100003\)后的结果即可。如果无法到达顶点\(i\)则输出\(0\)。

输入输出样例

输入 #1

5 7

1 2

1 3

2 4

3 4

2 3

4 5

4 5

输出 #1

1

1

1

2

4

说明/提示

\(1\)到\(5\)的最短路有\(4\)条,分别为\(2\)条\(1-2-4-5\)和\(2\)条\(1-3-4-5\)(由于\(4-5\)的边有\(2\)条)。

对于\(20\%\)的数据,\(N ≤ 100\);

对于\(60\%\)的数据,\(N ≤ 1000\);

对于\(100\%\)的数据,\(N<=1000000,M<=2000000\)。

【思路】

最短路 , dijkstra

【题目大意】

从1到每一个点的最短路有多少条

【核心思路】

最短路有多少条?

完全可以在dijkstra或者SPFA的过程中求出来的

因为在松弛操作的时候

用y到x的边去松弛

如果这条边替换上去会使1到x的距离更近

那这个时候x的答案就会变为松到他y的最短路的个数

如果这条边替换上去和原来一样

那就是目前看来可以当做最短路

在x原来最短路个数的基础上加上到点y最短路的个数就可以了

【完整代码】

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring> using namespace std; int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9')
{
if(c == '-')fg = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
{
sum = sum * 10 + c - '0';
c = getchar();
}
return sum * fg;
}
const int Max = 2000006;
const int mo = 100003;
struct node
{
int y,ne;
}a[Max << 1];
int head[Max >> 1],sum = 0; void add(int x,int y)
{
a[++ sum].y = y;
a[sum].ne = head[x];
head[x] = sum;
} struct point
{
int x;
int w;
bool operator < (const point xx) const
{
return xx.w < w;
}
};
int dis[Max >> 1];
priority_queue<point>q;
int ans[Max >> 1];
bool use[Max >> 1];
void dj()
{
memset(dis,0x3f,sizeof(dis));
dis[1] = 0;
ans[1] = 1;
q.push((point){1,0});
while(!q.empty())
{
point qwq = q.top();
q.pop();
int x = qwq.x,w = qwq.w;
if(use[x] == true)
continue;
else
use[x] = true;
for(register int i = head[x];i != 0;i = a[i].ne)
{
int awa = a[i].y;
if(dis[awa] > dis[x] + 1)
{
dis[awa] = dis[x] + 1;
ans[awa] = ans[x];
if(use[awa] == false)
q.push((point){awa,dis[awa]});
}
else
if(dis[awa] == dis[x] + 1)
{
ans[awa] += ans[x];
ans[awa] %= mo;
}
}
}
} int main()
{
int n = read(),m = read();
for(register int i = 1;i <= m;++ i)
{
int x = read(),y = read();
add(x,y);
add(y,x);
}
dj();
for(register int i = 1;i <= n;++ i)
cout << ans[i] << endl;
return 0;
}

洛谷 P1144 最短路计数 题解的更多相关文章

  1. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  2. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  3. 洛谷——P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  4. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  5. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

  6. 洛谷 P1144 最短路计数

    传送门:https://www.luogu.org/problemnew/show/P1144 这虽然是一道普及+的题,然而我发现我现在还没做过,这也就直接导致我今天模拟T2只杠了个暴力分…… 那这道 ...

  7. 洛谷P1144——最短路计数

    题目:https://www.luogu.org/problemnew/show/P1144 spfa跑最短路的同时记录cnt数组表示到达方案数. 代码如下: #include<iostream ...

  8. 洛谷P1144 最短路计数【堆优化dijkstra】

    题目:https://www.luogu.org/problemnew/show/P1144 题意:问1到各个节点的最短路有多少条. 思路:如果松弛的时候发现是相等的,说明可以经过该点的最短路径到达当 ...

  9. 洛谷 P1144 最短路计数 Label:水

    题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行 ...

随机推荐

  1. DELL OptiPlex 7050M黑苹果纪录

    准备工作: 主机:OptiPlex 7050 Micro Desktop Computer 镜像:黑果小兵 macOS Catalina 10.15.1 安装过程: 大体的安装过程,就Dell品牌而言 ...

  2. 1.ZooKeeper ACL权限控制

    参考:https://blog.csdn.net/liuxiao723846/article/details/79391650 ZK 类似文件系统,Client 可以在上面创建节点.更新节点.删除节点 ...

  3. 财产PROPRETIE英语PROPRETIE房地产

    property Alternative forms propretie English English Wikipedia has articles on: Property (disambigua ...

  4. Java深入学习(4):Future模式

    Future模式: 其实相当于是前端的Ajax 比如我们使用多线程下载文件时候,每一个线程都会发送HTTP请求资源.而我如何知道,文件下载完毕呢? 也就是说,主线程如何获得子线程的执行结果呢? 创建多 ...

  5. Java Web项目搭建过程记录(struts2)

    开发工具:eclipse 搭建环境:jdk1.7   tomcat 8.0 基础的java开发环境搭建过程不再赘述,下面从打开eclipse 之后的操作开始 第一步: 创建项目,File -> ...

  6. Golang报错:Cannot convert expression of type interface{} to type []byte

    在使用golang实现后端登录逻辑的时候,碰到下面的问题:Cannot convert expression of type interface{} to type []byte 首先介绍下问题出现的 ...

  7. 数据结构与算法17—B树(B、B+、B*)

    B树 B-树,就是B树,B树的原英文名是B-tree,所以很多翻译为B-树,就会很多人误以为B-树是一种树.B树是另外一种树.其实,B-tree就是B树. B-树的定义 B树(B-tree)是一种树状 ...

  8. Python:基础复习

    一.数据类型 对象的三大特征:值.身份.类型: 1)数字 Number 整型.浮点型 只有 int 和 float 两种类型: type(2/2):float 类型:2/2 == 1.0: type( ...

  9. 接触手机脚本编程------基于触动精灵的lua编程

    Auto.js好用多了,还不用root直接能用,我为什么学这个呢..... 最近因为学习需要开始接触一门新的脚本语言,我更深刻的发现了,语言只是一种工具,重要的是解决问题的思维,由于这次是需要我快速掌 ...

  10. ELK快速入门(五)配置nginx代理kibana

    ELK快速入门五-配置nginx代理kibana 由于kibana界面默认没有安全认证界面,为了保证安全,通过nginx进行代理并设置访问认证. 配置kibana [root@linux-elk1 ~ ...