题目分析

题目就是求第K种原料的出现期望时间。

考虑广义min-max容斥。

\(\text{kthmax}(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\binom{|T|-1}{k-1}\min(T)\)

显然\(\min(T)=\frac{m}{\sum\limits_{i\in S}p_i}\)。

发现\(m\)的范围很小,那么我们可以考虑设状态dp算贡献。

设\(f_{j,k}\)表示对于集合\(|S|\),\(j=\sum\limits_{i\in S}p_i\),集合大小为\(k\)的方案数。

转移显然。

但是时间复杂度为\(O(n^2m)\),难以ac。

观察到还有\(|n-k|<=10\)的条件,考虑改变状态。

设\(f_{j,k}\)表示对于集合\(S\),\(j=\sum\limits_{i\in S}p_i\),

组合数下标为\(k\)的\(\sum\limits_{T}(-1)^{|T|-k}\binom{|T|-1}{k-1}\min(T)\)的值。

对于一个概率为\(v\)的新物品:

如果不加入,直接累加前面的答案。

如果加入,那么答案应该是从\(f_{j-v,k-1}\)转移过来。

我们观察一波式子(标解)

我们用\(g_{i,j}\)表示对于集合\(S\),\(|S|=i\),\(j= \sum\limits_{k\in S}p_k\)的方案数。

对于\(f_{j-v,k}\):

\(f_{j-v,k-1}=\sum\limits_{i}(-1)^{i-k+1}\binom{i-1}{k-2}g_{i,j-v}\)

\(=-\sum\limits_{i}(-1)^{i-k}\binom{i-1}{k-2}g_{i,j-v}\)

增加一个物品后:

\(\triangle f_{j,k}=\sum\limits_i(-1)^{i-k+1}\binom{i}{k-1}g_{i,j-v}\)

\(=-\sum\limits_i(-1)^{i-k}\binom{i}{k-1}g_{i,j-v}\)

两式相减:

\(\triangle f_{j,k}-f_{j-v,k-1}=-\sum\limits_i(-1)^{i-k}\binom{i-1}{k-1}g_{i,j-v}\)

\(=-f_{j-v,k}\)

因此我们得到了递推式:

\(f_{j,k}=f'_{j,k}+f'_{j-v,k-1}-f'_{j-v,k}\)

因此我们就可以\(O(m*(n-k))\)解决dp。

答案就是\(\sum\limits_{i=1}^{m}\frac{m}{i}f_{i,k}\)

#include <bits/stdc++.h>
using namespace std;
inline int Getint(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch))ch!='-'?:f=-1,ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
typedef long long ll;
const int mod=998244353;
int n,K,m,f[2][10005][15],p[1005];
int inv[10005];
ll Pow(ll x,ll k){
ll ret=1;
while(k){
if(k&1)ret=ret*x%mod;
k>>=1;x=x*x%mod;
}
return ret;
}
int main(){
n=Getint();K=n-Getint()+1;m=Getint();
for(int i=0;i<=m;i++)inv[i]=Pow(i,mod-2);
for(int i=1;i<=n;i++)p[i]=Getint();
int cur=0,pre=1;
for(int i=1;i<=10;i++)f[cur][0][i]=-1;
for(int i=1;i<=n;i++){
cur^=1;pre^=1;
for(int j=0;j<=m;j++)
for(int k=1;k<=10;k++){
f[cur][j][k]=f[pre][j][k];
if(j>=p[i]){
f[cur][j][k]=(f[cur][j][k]-f[pre][j-p[i]][k])%mod;
if(k>0)f[cur][j][k]=(f[cur][j][k]+f[pre][j-p[i]][k-1])%mod;
}
}
}
ll ans=0;
for(int i=1;i<=m;i++)ans=(ans+1ll*f[cur][i][K]%mod*m%mod*inv[i])%mod;
cout<<(ans+mod)%mod<<"\n";
}

洛谷 P4707 【重返现世】的更多相关文章

  1. 洛谷 P4707 重返现世

    洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...

  2. [洛谷P4707] 重返现世

    Description 为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙.\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始 ...

  3. 洛谷P4707 重返现世 [DP,min-max容斥]

    传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...

  4. 【题解】洛谷P4707重返现世

    在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...

  5. 洛谷P4707 重返现世(扩展MinMax容斥+dp)

    传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...

  6. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  7. Luogu P4707 重返现世

    题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...

  8. Luogu P4707 重返现世 (拓展Min-Max容斥、DP)

    题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...

  9. P4707 重返现世 扩展 MinMax 容斥+DP

    题目传送门 https://www.luogu.org/problem/P4707 题解 很容易想到这是一个 MinMax 容斥的题目. 设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\ ...

随机推荐

  1. C++ 小知识点 WINAPI

    int WINAPI WINMain 中,WINAPI含义 网友给出回答:在windef.h头文件中有如下定义#define WINAPI      __stdcall#define APIENTRY ...

  2. JS 格林威治时间格式(GMT)格式化

    Date.prototype.format = function (format) { var o = { "M+": this.getMonth() + 1, //month & ...

  3. 面向对象设计模式_享元模式(Flyweight Pattern)解读

    场景:程序需要不断创建大量相似的细粒度对象,会造成严重的内存负载.我们可以选择享元模式解决该问题. 享元抽象:Flyweight 描述享元的抽象结构.它包含内蕴和外蕴部分(别被术语迷惑,这是一种比较深 ...

  4. python去掉字符串中空格的方法

    1.strip():把头和尾的空格去掉 2.lstrip():把左边的空格去掉 3.rstrip():把右边的空格去掉 4.replace('c1','c2'):把字符串里的c1替换成c2.故可以用r ...

  5. Python selenium —— 父子、兄弟、相邻节点定位方式详解

    今天跟大家分享下selenium中根据父子.兄弟.相邻节点定位的方法,很多人在实际应用中会遇到想定位的节点无法直接定位,需要通过附近节点来相对定位的问题,但从父节点定位子节点容易,从子节点定位父节点. ...

  6. MongoDB数据库在centos下的操作

    简介 MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库 ...

  7. 【读书笔记】iOS-iOS定位

    iOS提供3种不同的定位途径: 1,WiFi定位,通过查询一个WiFi路由器的地理位置信息,比较省电:iPhone,iPod touch和iPad都可以采用: 2,蜂窝式移动电话基站定位,通过移动运营 ...

  8. (1)H5实现音乐播放器【正在播放-歌词篇】

    近期闲来无事,就想着复习一下前端的东西,然后正好跟朋友搞了一个公共开放的音乐api接口,就想着写一个音乐播放器玩玩! 话不多说,直接上图,然后上代码 [播放器显示正在播放] 实现功能: 1:歌词随着歌 ...

  9. C#版Aliyun DNS API

    阿里云解析API,是为域名开发者.注册商.域名代理商等提供的开放和便捷的解析服务接口.API依托于万网云解析服务,可以方便的管理域名和解析记录,让你的解析管理变的随心省时自由舒畅. 一.先附上Aliy ...

  10. DevExpress.XtraCharts曲线上的点所对应的坐标值

    private void chartControl_ObjectSelected(object sender, HotTrackEventArgs e) { e.Cancel = false; XYD ...