Solution

实际上就是查询 $u$ 到 $v$ 路径上 边双的个数 $ -1$。

并且题目仅有删边, 那么就离线倒序添边。

维护 边双 略有不同:

首先需要一个并查集, 记录 边双内的点。 在 添加边$(u,v)$时 , 若$u, v$ 已经相连, 那么把 $u, v$ 路径上的点 缩成一个点, 用最上面的点 来代替。

 void del(int x, int y) {
if (!x) return;
fa[x] = y;
del(lc(x), y);
del(rc(x), y);
}

压缩点

access 也应该变化 : $f[x]$ 可能已经经过压缩了。

 void access(int x) {
for (int y = ; x; y = x, x = f[y] = anc(f[x]))
splay(x), ch[x][] = y, up(x);
}

access

Code

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rd read()
using namespace std; const int N = 3e4 + ;
const int M = 1e5 + ; int n, m;
int fa[N], ans[N], vis[M]; struct edge {
int u, v; bool operator < (const edge &b) const {
return u == b.u ? v < b.v : u < b.u;
}
}e[M]; struct que {
int op, u, v;
}q[M]; int read() {
int X = , p = ; char c = getchar();
for (; c > '' || c < ''; c = getchar())
if (c == '-') p = -;
for (; c >= '' && c <= ''; c = getchar())
X = X * + c - '';
return X * p;
} int anc(int x) {
return fa[x] == x? x : fa[x] = anc(fa[x]);
} namespace LCT {
int f[N], sz[N], ch[N][], tun[N];
#define lc(x) ch[x][0]
#define rc(x) ch[x][1] int isroot(int x) {
return rc(f[x]) != x && lc(f[x]) != x;
} int get(int x) {
return rc(f[x]) == x;
} void rev(int x) {
swap(lc(x), rc(x));
tun[x] ^= ;
} void up(int x) {
sz[x] = ;
if (lc(x)) sz[x] += sz[lc(x)];
if (rc(x)) sz[x] += sz[rc(x)];
} void pushdown(int x) {
if (tun[x]) {
if (lc(x)) rev(lc(x));
if (rc(x)) rev(rc(x));
tun[x] = ;
}
} void pd(int x) {
if (!isroot(x))
pd(f[x]);
pushdown(x);
} void rotate(int x) {
int old = f[x], oldf = f[old], son = ch[x][get(x) ^ ];
if (!isroot(old)) ch[oldf][get(old)] = x;
ch[x][get(x) ^ ] = old;
ch[old][get(x)] = son;
f[son] = old; f[x] = oldf; f[old] = x;
up(old); up(x);
} void splay(int x) {
pd(x);
for (; !isroot(x); rotate(x))
if (!isroot(f[x]))
rotate(get(f[x]) == get(x) ? f[x] : x);
} void access(int x) {
for (int y = ; x; y = x, x = f[y] = anc(f[x]))
splay(x), ch[x][] = y, up(x);
} int findr(int x) {
access(x); splay(x);
while (lc(x)) pushdown(x), x = lc(x);
return x;
} void mroot(int x) {
access(x); splay(x); rev(x);
} void split(int x, int y) {
mroot(x); access(y); splay(y);
} void del(int x, int y) {
if (!x) return;
fa[x] = y;
del(lc(x), y);
del(rc(x), y);
} void link(int x, int y) {
mroot(x);
f[x] = y;
} void merge(int x, int y) {
x = anc(x); y = anc(y);
if (x == y)
return;
mroot(x);
if (findr(y) != x)
link(x, y);
else {
splay(x);
del(rc(x), x);
rc(x) = ; up(x);
}
}
} using namespace LCT; int main()
{
n = rd; m = rd;
for (int i = ; i <= n; ++i)
fa[i] = i;
for (int i = ; i <= m; ++i) {
e[i].u = rd; e[i].v = rd;
if (e[i].u > e[i].v)
swap(e[i].u, e[i].v);
}
sort(e + , e + + m);
int Q = ;
for (; ; ) {
int op = rd;
if (op == -)
break;
int u = rd, v = rd;
if (u > v)
swap(u, v);
q[++Q].op = op; q[Q].u = u;
q[Q].v = v;
edge t;
t.u = u; t.v = v;
if (op == )
vis[lower_bound(e + , e + + m, t) - e] = ;
}
for (int i = ; i <= m; ++i)
if (!vis[i])
merge(e[i].u, e[i].v);
for (int i = Q; i; i--) {
if (q[i].op == ) {
int x = q[i].u, y = q[i].v;
x = anc(x); y = anc(y);
if (x == y) {ans[i] = ; continue;}
split(x, y);
ans[i] = sz[y] - ;
}
else merge(q[i].u, q[i].v);
}
for (int i = ; i <= Q; ++i)
if (q[i].op == )
printf("%d\n", ans[i]);
}

BZOJ 1969 航线规划 - LCT 维护边双联通分量的更多相关文章

  1. [AHOI2005]航线规划——LCT维护边双联通分量

    因为只能支持加入一个边维护边双,所以时光倒流 维护好边双,每次就是提取出(x,y)的链,答案就是链长度-1 具体维护边双的话, void access(int x){ for(reg y=0;x;y= ...

  2. P2542 [AHOI2005]航线规划 LCT维护双连通分量

    \(\color{#0066ff}{ 题目描述 }\) 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系--一个巨大的由千百万星球构成的Samuel ...

  3. LCT 维护边双 / 点双的模板

    用 \(\text{LCT}\) 维护边双的做法是:加入一条非树边时,将这段树上路径合并为一个点代表这个边双,具体实现用并查集合并点,在 \(\text{Splay}\) 与 \(\text{Acce ...

  4. BZOJ 2959: 长跑 lct 双联通分量 并查集 splay

    http://www.lydsy.com/JudgeOnline/problem.php?id=2959 用两个并查集维护双联通分量的编号和合并. #include<iostream> # ...

  5. POJ 3694Network(Tarjan边双联通分量 + 缩点 + LCA并查集维护)

    [题意]: 有N个结点M条边的图,有Q次操作,每次操作在点x, y之间加一条边,加完E(x, y)后还有几个桥(割边),每次操作会累积,影响下一次操作. [思路]: 先用Tarjan求出一开始总的桥的 ...

  6. BZOJ 压力 tarjan 点双联通分量+树上差分+圆方树

    题意 如今,路由器和交换机构建起了互联网的骨架.处在互联网的骨干位置的核心路由器典型的要处理100Gbit/s的网络流量. 他们每天都生活在巨大的压力之下.小强建立了一个模型.这世界上有N个网络设备, ...

  7. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  8. 【UVA10972】RevolC FaeLoN (求边双联通分量)

    题意: 给你一个无向图,要求把所有无向边改成有向边,并且添加最少的有向边,使得新的有向图强联通. 分析: 这题的解法还是很好想的.先用边双联通分量缩点,然后找新图中入度为0和为1的点,入度为0则ans ...

  9. lightoj 1300 边双联通分量+交叉染色求奇圈

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1300 边双连通分量首先dfs找出桥并标记,然后dfs交叉着色找奇圈上的点.这题只要求在 ...

随机推荐

  1. js高级-浏览器事件循环机制Event Loop

    JavaScript 是队列的形式一个个执行的 同一时间只能执行一段代码,单线程的  (队列的数据结构) 浏览器是多线程的 JavaScript执行线程负责执行js代码 UI线程负责UI展示的 Jav ...

  2. LisView控件

    用LisView控件在窗体中创建一个表,设置一个按钮,点击按钮, 将数据库中的表在这个控件中显示(LisView控件中表格式列名与数据库中一致) 首先使用控件将表的每一列创建好,加入一个按钮,如图,现 ...

  3. jenkins gradle 实践总结

    执行protoc 通过shell ,那么将gradle 中的proto 项目移除即可 安装 最新的idea 版本 ,并安装 最新kotlin 插件,通过http://plugins.jetbrains ...

  4. 对于“2017面向对象程序设计(JAVA)第四周学习总结”存在问题的反馈

    对于“2017面向对象程序设计(JAVA)第四周学习总结”存在问题的反馈 “这部分同学博文总结没有写,实验作业没有提交.”——1.关于博文作业.实验作业教学功能的正解:学习知识.暴露问题.衔接课上.2 ...

  5. java.net.NoRouteToHostException

    1.之前一直默认的一个请求url,后来后台ip更换后,就报上述错误.网上好多方法说:关闭服务器端的防火墙,但试过没用. 问题有待重新测试解决

  6. WebView 加载网页返回后,jsp界面数据消失(一个斜杆引起来的风波)

    http://ip:port//interface/app/index.jsp 如果不小心就会把,port后面的//两个斜杆给忽略... 当有两个斜杆时,webview仍可以将网页,正常加载.但是数据 ...

  7. Java中递归的优缺点,Java写一个递归遍历目录下面的所有文件包括子文件夹里边的文件。

    题目: 遍历出aaa文件夹下的文件 首先分析思路: 1.首先判断这个文件夹是否为文件,通过isFile()函数可以判断是否为文件. 2.然后通过isDirectory判断是否为目录. 3.如果是目录就 ...

  8. scrapy 异步存储mysql

    1.在setting中设置MySQL连接信息 HOST='101.201.70.139'MYSQL_DBNAME='anttest'MYSQL_PASSWORD='Myjr678!@#'MYSQL_U ...

  9. python学习day7 数据类型及内置方法补充

    http://www.cnblogs.com/linhaifeng/articles/7133357.html#_label4 1.列表类型 用途:记录多个值(一般存放同属性的值) 定义方法 在[]内 ...

  10. windows 下 wamp php单元测试工具PHPUnit的安装

    phpunit下载网站 http://www.phpunit.cn/ 一.安装PHPUnit 1.选择版本 我用的是php版本是5.6.25 所以我选择的是PHPUnit 5.7 2.安装过程 为 P ...