题意:

把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法?

隔板法。。。不会的可以买一本高中数学知识清单。。。给高中班主任打个广告。。。。

隔板法分两种。。。一种是不存在空集 = C(n-1,m-1)。。。一种是存在空集 = C(n+m-1, m-1)

这题就是存在空集的解法。。。因为可以是0

.只会快速幂写组合数的我瑟瑟发抖。。。赶紧翻了紫书。。。

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000000
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL C[maxn][maxn];
void init()
{
mem(C, );
for(int i=; i<maxn; i++)
{
C[i][] = ;
for(int j=; j<=i; j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % MOD;
}
}
int main()
{
int n, m;
init();
while(cin>> n >> m && n+m)
{
printf("%d\n",C[n+m-][m-] % MOD); }
return ;
}

How do you add? UVA - 10943(组合数的隔板法!!)的更多相关文章

  1. 数论 UVA 10943

    这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...

  2. UVA 10943 How do you add? DP

    Larry is very bad at math — he usually uses a calculator, whichworked well throughout college. Unfor ...

  3. UVA 10943 - How do you add? 递推

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  5. UVA 10943 How do you add?

    设函数 f(k)(n); 则: f(1)(n)=1; f(2)(n)=f(1)(0)+f(1)(1)+f(1)(2)+...+f(1)(n); f(3)(n)=f(2)(0)+f(2)(1)+f(2) ...

  6. UVa 10943 How do you add?【递推】

    题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...

  7. UVa 10883 (组合数 对数) Supermean

    在纸上演算一下就能看出答案是:sum{ C(n-1, i) * a[i] / 2^(n-1) | 0 ≤ i ≤ n-1 } 组合数可以通过递推计算:C(n, k) = C(n, k-1) * (n- ...

  8. 紫书 习题 10-21 UVa 1649 (组合数)

    C(n, k) = m, 固定k,枚举k 这里用到了组合数的一个性质 当k固定的时候,C(2 * k, k) 最小 C(m, k)最大(对于这道题而言是这样,因为大于m 就最终答案不可能为m了) 所以 ...

  9. UVa 10253 (组合数 递推) Series-Parallel Networks

    <训练之南>上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到. 题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西. 经过书上的神分析,最终将所求变为: 共n个叶子,每个非叶 ...

随机推荐

  1. 用cloudmonkey批量创建虚拟机

    需求: 1.root磁盘120G(这个在做镜像的时候已经做好) 2.需要用到share网络 3.添加500G磁盘并且挂载早虚拟机上面 #!/bin/bashzone_id=d530fee4-413a- ...

  2. Excel frequency函数

    计算连续次数最常用的函数就是FREQUENCY,下面就这个函数在计算连续次数的应用做一个详细图解.首先,我们需要了解一下FREQUENCY函数的计算原理.    FREQENCY(数据区域,用于设置区 ...

  3. html样式表格

    <html><body><table border="1">  <tr height="20px">    &l ...

  4. Android APK 签名比对(转)

    Android apk签名的过程 1. 生成MANIFEST.MF文件: 程序遍历update.apk包中的所有文件(entry),对非文件夹非签名文件的文件,逐个生成SHA1的数字签名信息,再用Ba ...

  5. 20155210 Exp9 Web安全基础实践

    Exp9 Web安全基础实践 实验过程 开启webgoat 输入java -jar webgoat-container-7.1-exec.jar,来运行webgoat 在浏览器输入localhost: ...

  6. GIT命令基本使用

    记录摘选自廖雪峰的官方网站归纳总结 1.centos下安装git [root@cdw-lj ~]# yum install git 2.配置用户名以及邮箱 [root@cdw-lj opt]# git ...

  7. Scala学习(一)练习

    Scala基础学习&l练习 1. 在Scala REPL中键人3.,然后按Tab键.有哪些方法可以被应用 在Scala REPL中需要按3. 然后按Tab才会提示. 直接按3加Tab是没有提示 ...

  8. ajax传递数组给controller的实现方法和坑

    这里是前端向后端传递一个数组的方式,参考下面这个示例: (主要是将前端的数组,用 JSON.stringify() 方法json化一下,然后后端springmvc接收到以后,使用 JSONArray  ...

  9. 行级安全(Row-Level Security)

    通过授予和拒绝(Grant/Deny)命令控制用户的权限,只能控制用户对数据库对象的访问权限,这意味着,用户访问的粒度是对象整体,可以是一个数据表,或视图等,用户要么能够访问数据库对象,要么没有权限访 ...

  10. Docker GitHub 网站中 Readme.md 以技术者的角度翻译

    Docker 是一个开源的轻量级容器项目,用于让你的应用在它上面打包.集装和运行.Docker 运行的环境既包含未知硬件也包含未知操作系统.这句话的意思是它可以运行在任何地方,小到你的笔记本大到一个大 ...