题意:

把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法?

隔板法。。。不会的可以买一本高中数学知识清单。。。给高中班主任打个广告。。。。

隔板法分两种。。。一种是不存在空集 = C(n-1,m-1)。。。一种是存在空集 = C(n+m-1, m-1)

这题就是存在空集的解法。。。因为可以是0

.只会快速幂写组合数的我瑟瑟发抖。。。赶紧翻了紫书。。。

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000000
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL C[maxn][maxn];
void init()
{
mem(C, );
for(int i=; i<maxn; i++)
{
C[i][] = ;
for(int j=; j<=i; j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % MOD;
}
}
int main()
{
int n, m;
init();
while(cin>> n >> m && n+m)
{
printf("%d\n",C[n+m-][m-] % MOD); }
return ;
}

How do you add? UVA - 10943(组合数的隔板法!!)的更多相关文章

  1. 数论 UVA 10943

    这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...

  2. UVA 10943 How do you add? DP

    Larry is very bad at math — he usually uses a calculator, whichworked well throughout college. Unfor ...

  3. UVA 10943 - How do you add? 递推

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  5. UVA 10943 How do you add?

    设函数 f(k)(n); 则: f(1)(n)=1; f(2)(n)=f(1)(0)+f(1)(1)+f(1)(2)+...+f(1)(n); f(3)(n)=f(2)(0)+f(2)(1)+f(2) ...

  6. UVa 10943 How do you add?【递推】

    题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...

  7. UVa 10883 (组合数 对数) Supermean

    在纸上演算一下就能看出答案是:sum{ C(n-1, i) * a[i] / 2^(n-1) | 0 ≤ i ≤ n-1 } 组合数可以通过递推计算:C(n, k) = C(n, k-1) * (n- ...

  8. 紫书 习题 10-21 UVa 1649 (组合数)

    C(n, k) = m, 固定k,枚举k 这里用到了组合数的一个性质 当k固定的时候,C(2 * k, k) 最小 C(m, k)最大(对于这道题而言是这样,因为大于m 就最终答案不可能为m了) 所以 ...

  9. UVa 10253 (组合数 递推) Series-Parallel Networks

    <训练之南>上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到. 题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西. 经过书上的神分析,最终将所求变为: 共n个叶子,每个非叶 ...

随机推荐

  1. VBA删除 语法

    Option Explicit '清空数据  Private Sub CommandButton1_Click() Dim qknum As Integer  '选择是或者否 来确认删除数据 '中对话 ...

  2. 02-Maven安装配置

    1.Maven下载 2.Maven依赖 3.安装Maven 4.Maven目录

  3. SonarQube配置LDAP认证集成

    1.准备工作 获取LDAP服务信息.admin账号.安装sonarldap插件. 2.LDAP配置 #LDAP settings #admin sonar.security.realm=LDAP ld ...

  4. Jupyter Notebook中让python2和python3内核共存

    自己计算机里面共存了Python2和Python3,ipython作为试探性的REPL解释器使用的频率还是挺高的,分别在2和3下安装完ipython notebook后怎么分别使用这两种内核呢 按照默 ...

  5. Mike的农场 BZOJ4177

    分析: 最小割,不选则割的建模题...(然而一开始我当成了费用流,简直丧心病狂...最后想到了最小割...) 对于条件一,直接建一条双向边就可以了,并且不计入sum中,因为这是作为费用的存在,让它跑出 ...

  6. linux_vim

    今天稍微学习以下vim 学习的一些课件: 1. 2. 3. 4. 5.

  7. python_分布式进程中遇到的问题

    看文档学习分布式进程中遇到了一下问题,文档里面例题是python2.X,我用的python3.x,就出现了一下莫名奇妙的问题,最终版代码先呈上: taskManager.py # coding:utf ...

  8. 笔记:UITextView内容垂直居中方法

    - (void)contentSizeToFit { //先判断一下有没有文字(没文字就没必要设置居中了) ) { //textView的contentSize属性 CGSize contentSiz ...

  9. 大数据入门第二十三天——SparkSQL(二)结合hive

    一.SparkSQL结合hive 1.首先通过官网查看与hive匹配的版本 这里可以看到是1.2.1 2.与hive结合 spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然 ...

  10. mfc Edit控件属性

    设置Edit控件属性 窗口创建顺序 初始化Edit控件数据 一.设置Edit控件属性 .Align Text :Right 二.窗口创建顺序 CMywindowdlg: 窗口构造函数 OnCreate ...