How do you add? UVA - 10943(组合数的隔板法!!)
题意:
把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法?
隔板法。。。不会的可以买一本高中数学知识清单。。。给高中班主任打个广告。。。。
隔板法分两种。。。一种是不存在空集 = C(n-1,m-1)。。。一种是存在空集 = C(n+m-1, m-1)
这题就是存在空集的解法。。。因为可以是0
.只会快速幂写组合数的我瑟瑟发抖。。。赶紧翻了紫书。。。
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000000
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL C[maxn][maxn];
void init()
{
mem(C, );
for(int i=; i<maxn; i++)
{
C[i][] = ;
for(int j=; j<=i; j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % MOD;
}
}
int main()
{
int n, m;
init();
while(cin>> n >> m && n+m)
{
printf("%d\n",C[n+m-][m-] % MOD); }
return ;
}
How do you add? UVA - 10943(组合数的隔板法!!)的更多相关文章
- 数论 UVA 10943
这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...
- UVA 10943 How do you add? DP
Larry is very bad at math — he usually uses a calculator, whichworked well throughout college. Unfor ...
- UVA 10943 - How do you add? 递推
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVa 10943 (数学 递推) How do you add?
将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...
- UVA 10943 How do you add?
设函数 f(k)(n); 则: f(1)(n)=1; f(2)(n)=f(1)(0)+f(1)(1)+f(1)(2)+...+f(1)(n); f(3)(n)=f(2)(0)+f(2)(1)+f(2) ...
- UVa 10943 How do you add?【递推】
题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...
- UVa 10883 (组合数 对数) Supermean
在纸上演算一下就能看出答案是:sum{ C(n-1, i) * a[i] / 2^(n-1) | 0 ≤ i ≤ n-1 } 组合数可以通过递推计算:C(n, k) = C(n, k-1) * (n- ...
- 紫书 习题 10-21 UVa 1649 (组合数)
C(n, k) = m, 固定k,枚举k 这里用到了组合数的一个性质 当k固定的时候,C(2 * k, k) 最小 C(m, k)最大(对于这道题而言是这样,因为大于m 就最终答案不可能为m了) 所以 ...
- UVa 10253 (组合数 递推) Series-Parallel Networks
<训练之南>上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到. 题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西. 经过书上的神分析,最终将所求变为: 共n个叶子,每个非叶 ...
随机推荐
- day67
昨日回顾 1 orm 创建表,新增字段,修改,删除字段,不能创建数据库 -字段属性phone=models.CharField(max_length=64,null=True) -null=Tru ...
- 大数据入门第十六天——流式计算之storm详解(三)集群相关进阶
一.集群提交任务流程分析 1.集群提交操作 参考:https://www.jianshu.com/p/6783f1ec2da0 2.任务分配与启动流程 参考:https://www.cnblogs.c ...
- 20155234 Exp2 后门原理与实践
Windows获得Linux Shell 1.查看ip 2.监听端口 3.实验成功如下图 Linux获得Win Shell 1.查看虚拟机ip 2.监听端口 3.实验成功如下图 使用NC传输数据 1. ...
- Exp7 网络欺诈技术防范
Exp7 网络欺诈技术防范 基础问题回答 1.通常在什么场景下容易受到DNS spoof攻击? 在同一局域网下比较容易受到DNS spoof攻击,攻击者可以冒充域名服务器,来发送伪造的数据包,从而修改 ...
- 20155306 白皎 0day漏洞——漏洞利用原理之GS
20155306 白皎 0day漏洞--漏洞利用原理之GS 一.GS安全编译选项的保护原理 1.1 GS的提出 在第二篇博客(栈溢出利用)中,我们可以通过覆盖函数的返回地址来进行攻击,面对这个重灾区, ...
- 【转载】C++引用详解
原文:http://www.cnblogs.com/gw811/archive/2012/10/20/2732687.html 引用的概念 引用:就是某一变量(目标)的一个别名,对引用的操作与对变量直 ...
- 微信小程序之生命周期
1. 整个小程序生命周期 App({}) //app.js App({ onLaunch: function (options) { // 小程序初始化完成时(全局只触发一次) // 程序销毁(过一段 ...
- [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]
题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...
- webpack 支持的模块方法
在webpack中支持的模块语法风格有:ES6,commonJS和AMD ES6风格(推荐) 在webpack2中,webpack支持ES6模块语法.这意味着在没有babel等工具处理的情况下你就可以 ...
- vue项目eslint配置 以及 解释
// https://eslint.org/docs/user-guide/configuring module.exports = { root: true, parserOptions: { pa ...