题意:

把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法?

隔板法。。。不会的可以买一本高中数学知识清单。。。给高中班主任打个广告。。。。

隔板法分两种。。。一种是不存在空集 = C(n-1,m-1)。。。一种是存在空集 = C(n+m-1, m-1)

这题就是存在空集的解法。。。因为可以是0

.只会快速幂写组合数的我瑟瑟发抖。。。赶紧翻了紫书。。。

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000000
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL C[maxn][maxn];
void init()
{
mem(C, );
for(int i=; i<maxn; i++)
{
C[i][] = ;
for(int j=; j<=i; j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % MOD;
}
}
int main()
{
int n, m;
init();
while(cin>> n >> m && n+m)
{
printf("%d\n",C[n+m-][m-] % MOD); }
return ;
}

How do you add? UVA - 10943(组合数的隔板法!!)的更多相关文章

  1. 数论 UVA 10943

    这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...

  2. UVA 10943 How do you add? DP

    Larry is very bad at math — he usually uses a calculator, whichworked well throughout college. Unfor ...

  3. UVA 10943 - How do you add? 递推

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  5. UVA 10943 How do you add?

    设函数 f(k)(n); 则: f(1)(n)=1; f(2)(n)=f(1)(0)+f(1)(1)+f(1)(2)+...+f(1)(n); f(3)(n)=f(2)(0)+f(2)(1)+f(2) ...

  6. UVa 10943 How do you add?【递推】

    题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...

  7. UVa 10883 (组合数 对数) Supermean

    在纸上演算一下就能看出答案是:sum{ C(n-1, i) * a[i] / 2^(n-1) | 0 ≤ i ≤ n-1 } 组合数可以通过递推计算:C(n, k) = C(n, k-1) * (n- ...

  8. 紫书 习题 10-21 UVa 1649 (组合数)

    C(n, k) = m, 固定k,枚举k 这里用到了组合数的一个性质 当k固定的时候,C(2 * k, k) 最小 C(m, k)最大(对于这道题而言是这样,因为大于m 就最终答案不可能为m了) 所以 ...

  9. UVa 10253 (组合数 递推) Series-Parallel Networks

    <训练之南>上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到. 题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西. 经过书上的神分析,最终将所求变为: 共n个叶子,每个非叶 ...

随机推荐

  1. day67

    昨日回顾 1 orm 创建表,新增字段,修改,删除字段,不能创建数据库  -字段属性phone=models.CharField(max_length=64,null=True)  -null=Tru ...

  2. 大数据入门第十六天——流式计算之storm详解(三)集群相关进阶

    一.集群提交任务流程分析 1.集群提交操作 参考:https://www.jianshu.com/p/6783f1ec2da0 2.任务分配与启动流程 参考:https://www.cnblogs.c ...

  3. 20155234 Exp2 后门原理与实践

    Windows获得Linux Shell 1.查看ip 2.监听端口 3.实验成功如下图 Linux获得Win Shell 1.查看虚拟机ip 2.监听端口 3.实验成功如下图 使用NC传输数据 1. ...

  4. Exp7 网络欺诈技术防范

    Exp7 网络欺诈技术防范 基础问题回答 1.通常在什么场景下容易受到DNS spoof攻击? 在同一局域网下比较容易受到DNS spoof攻击,攻击者可以冒充域名服务器,来发送伪造的数据包,从而修改 ...

  5. 20155306 白皎 0day漏洞——漏洞利用原理之GS

    20155306 白皎 0day漏洞--漏洞利用原理之GS 一.GS安全编译选项的保护原理 1.1 GS的提出 在第二篇博客(栈溢出利用)中,我们可以通过覆盖函数的返回地址来进行攻击,面对这个重灾区, ...

  6. 【转载】C++引用详解

    原文:http://www.cnblogs.com/gw811/archive/2012/10/20/2732687.html 引用的概念 引用:就是某一变量(目标)的一个别名,对引用的操作与对变量直 ...

  7. 微信小程序之生命周期

    1. 整个小程序生命周期 App({}) //app.js App({ onLaunch: function (options) { // 小程序初始化完成时(全局只触发一次) // 程序销毁(过一段 ...

  8. [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]

    题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...

  9. webpack 支持的模块方法

    在webpack中支持的模块语法风格有:ES6,commonJS和AMD ES6风格(推荐) 在webpack2中,webpack支持ES6模块语法.这意味着在没有babel等工具处理的情况下你就可以 ...

  10. vue项目eslint配置 以及 解释

    // https://eslint.org/docs/user-guide/configuring module.exports = { root: true, parserOptions: { pa ...