题意:

把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法?

隔板法。。。不会的可以买一本高中数学知识清单。。。给高中班主任打个广告。。。。

隔板法分两种。。。一种是不存在空集 = C(n-1,m-1)。。。一种是存在空集 = C(n+m-1, m-1)

这题就是存在空集的解法。。。因为可以是0

.只会快速幂写组合数的我瑟瑟发抖。。。赶紧翻了紫书。。。

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000000
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL C[maxn][maxn];
void init()
{
mem(C, );
for(int i=; i<maxn; i++)
{
C[i][] = ;
for(int j=; j<=i; j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % MOD;
}
}
int main()
{
int n, m;
init();
while(cin>> n >> m && n+m)
{
printf("%d\n",C[n+m-][m-] % MOD); }
return ;
}

How do you add? UVA - 10943(组合数的隔板法!!)的更多相关文章

  1. 数论 UVA 10943

    这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...

  2. UVA 10943 How do you add? DP

    Larry is very bad at math — he usually uses a calculator, whichworked well throughout college. Unfor ...

  3. UVA 10943 - How do you add? 递推

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  5. UVA 10943 How do you add?

    设函数 f(k)(n); 则: f(1)(n)=1; f(2)(n)=f(1)(0)+f(1)(1)+f(1)(2)+...+f(1)(n); f(3)(n)=f(2)(0)+f(2)(1)+f(2) ...

  6. UVa 10943 How do you add?【递推】

    题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...

  7. UVa 10883 (组合数 对数) Supermean

    在纸上演算一下就能看出答案是:sum{ C(n-1, i) * a[i] / 2^(n-1) | 0 ≤ i ≤ n-1 } 组合数可以通过递推计算:C(n, k) = C(n, k-1) * (n- ...

  8. 紫书 习题 10-21 UVa 1649 (组合数)

    C(n, k) = m, 固定k,枚举k 这里用到了组合数的一个性质 当k固定的时候,C(2 * k, k) 最小 C(m, k)最大(对于这道题而言是这样,因为大于m 就最终答案不可能为m了) 所以 ...

  9. UVa 10253 (组合数 递推) Series-Parallel Networks

    <训练之南>上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到. 题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西. 经过书上的神分析,最终将所求变为: 共n个叶子,每个非叶 ...

随机推荐

  1. ansible 远程以普通用户执行命令

    1. ansible 10.0.0.1 -m raw -a "date" -u www 2.在ansible的主机配置文件中指定ssh_uservi/etc/ansible/hos ...

  2. day47

    高级布局 一.文档流(normal flow) 1.概念 本质为normal flow(普通流.常规流)将窗体自上而下分成一行一行,块级元素从上至下.行内元素在每行中从左至右的顺序依次排放元素. v_ ...

  3. DC-DC Controllers Use Average-Current-Mode Control for Infotainment Applications-3939

    DC-DC Controllers Use Average-Current-Mode Control for Infotainment Applications Abstract: Auto info ...

  4. C# Test Encryption and Decryption

    public MainWindow() { InitializeComponent(); Title = getUUID(); string s= httpGet("http://220.1 ...

  5. 20155234 Exp2 后门原理与实践

    Windows获得Linux Shell 1.查看ip 2.监听端口 3.实验成功如下图 Linux获得Win Shell 1.查看虚拟机ip 2.监听端口 3.实验成功如下图 使用NC传输数据 1. ...

  6. 20155237方自晨 实验四android开发基础

    提交点一 Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二版)(EPUBIT,Java for Android 2nd)>第二十四章: 安装 A ...

  7. 2017-2018-2 20155315《网络对抗技术》免考五:Windows提权

    原理 使用metasploit使目标机成功回连之后,要进一步攻击就需要提升操作权限.对于版本较低的Windows系统,在回连的时候使用getsystem提权是可以成功的,但是对于更高的系统操作就会被拒 ...

  8. 浅析arm的异常、中断和arm工作模式的联系

    说到异常向量,会让人联想到中断向量.其实,中断是属于异常的子集的,也就是说中断其实是异常其中的一种. 回到异常向量,他其实是一张表格,每个格子里存放的是一个地址,或者是一个跳转命令,不管是哪个,其目的 ...

  9. 洛咕 P3706 [SDOI2017]硬币游戏

    假设f[i]是第i个同学胜利的概率,也就是随机序列第一个匹配到s[i]的概率 假设前面有一个字符串\(S\),(假设无限长但没有匹配),现在往后面要加上第i个串\(s[i]\),这个的概率设为\(P_ ...

  10. C++学习之从C到C++

    头文件的包含 包含头文件可以不加.h结尾,如iostream,一些常用的头文件在引用时可以不加.h后缀,并在开头增加c,如: #include <cstdio> #include < ...