因为我现在还不会用这个。。。emm。。。蒟蒻。。。只看了 从来没用过。。。。所以切一道水题。。。练一下。。。

人家讲的很好  https://blog.csdn.net/u012860428/article/details/41259377

题目大意:求出满足要求的p和q,使得对于给定的x,k,,输出一组满足要求的p,q即可;

下面对于x,k进行讨论;

1、若x能被k整除,那么只要p+q=k即可;

2、如果不能被其整除,则领,那么,x=p*a+q*(a+1);相当于对于不定方程求解,易知,(a,a+1)=1,所以可以先用扩展欧几里得算法求出一组满足

ap + bq= d 的解  其中d = gcd(p,q)

然后 P = p * x/d  Q = q * x/d    因为求的是  ap + bq= d 的解  而我们要求ap + bq = x 的解    x = d * x/d  所以 求出的p 和 q 都乘上 x/d即可

即为解

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; void gcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
gcd(b, a%b, d, y, x);
y -= x*(a/b);
}
} int main()
{
int T;
cin>> T;
while(T--)
{
LL x, y, d, a, b, k, c;
cin>> c >> k;
if(c % k == )
{
cout<< << " " << k- <<endl; }
else
{
a = floor(c/(double)k);
b = ceil(c/(double)k);
gcd(a, b, d, x, y);
x*=c/d;
y*=c/d;
cout<< x << " " << y <<endl; } } return ;
}

Play with Floor and Ceil UVA - 10673(拓展欧几里得)的更多相关文章

  1. UVA 10673 扩展欧几里得

    题意:给出x 和k,求解p和q使得等式x = p[x / k] + q [ x / k], 两个[x / k]分别为向下取整和向上取整 题解:扩展欧几里得 //meek///#include<b ...

  2. uva 10548 - Find the Right Changes(拓展欧几里得)

    题目链接:uva 10548 - Find the Right Changes 题目大意:给定A,B,C,求x,y,使得xA+yB=C,求有多少种解. 解题思路:拓展欧几里得,保证x,y均大于等于0, ...

  3. UVA.12169 Disgruntled Judge ( 拓展欧几里得 )

    UVA.12169 Disgruntled Judge ( 拓展欧几里得 ) 题意分析 给出T个数字,x1,x3--x2T-1.并且我们知道这x1,x2,x3,x4--x2T之间满足xi = (a * ...

  4. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  5. NOIP2012拓展欧几里得

    拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...

  6. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  7. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  8. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  9. POJ1061 青蛙的约会-拓展欧几里得

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

随机推荐

  1. CentOS7下双网卡iptables端口转发规则

    1. 拓扑图 10.1.1.173(内网目标)  <--------  10.1.1.207(内网网关)+172.16.5.100(外网入口) <----------- 172.16.6. ...

  2. cloudstack 创建虚拟机失败

    Trying to find a potenial host and associated storage pools from the suitable host/pool lists for th ...

  3. MVC bundle的使用总结

    在我们的项目里面充斥着很多静态文件,为了追求模块化.插件化很多静态文件都被设计成模块的方式或者被分解,在需要的时候在通过组合的方式在UI层上使用:这就带来一个问题,文件多了会影响浏览器加载页面的速度, ...

  4. poj 2485 Highways (最小生成树)

    链接:poj 2485 题意:输入n个城镇相互之间的距离,输出将n个城镇连通费用最小的方案中修的最长的路的长度 这个也是最小生成树的题,仅仅只是要求的不是最小价值,而是最小生成树中的最大权值.仅仅须要 ...

  5. android环境的搭配

    android环境一般采用的是adt bundle 下载地址如下: http://tools.android-studio.org/index.php/adt-bundle-plugin 根据自己jd ...

  6. Ubuntu14.04配置gcc4.4.4+Qt4.8.4交叉编译环境

    安装32位程序运行支持 sudo apt-get install lib32stdc++6 lib32z1 lib32ncurses5 lib32bz2-1.0 可能报错: lib32stdc++6 ...

  7. 20155339 Exp6 信息搜集与漏洞扫描

    20155339 Exp6 信息搜集与漏洞扫描 实验后回答问题 (1)哪些组织负责DNS,IP的管理. 全球根服务器均由美国政府授权的ICANN统一管理,负责全球的域名根服务器.DNS和IP地址管理. ...

  8. controlfile作为RMAN的repository时,对 keep time 的测试

    4月2日,首先查看系统状况: SQL> show parameter control NAME                                 TYPE        VALUE ...

  9. 【Qt】QLabel实现的圆形图像

    本篇只描述圆形图像的两种实现方式,动态阴影边框如下: [Qt]QLabel之动态阴影边框 目前实现的效果如下: 左右两边实现的方式不同: 右边比较简单 min-width: 100px; max-wi ...

  10. maven 相关问题

    maven 这里要更新完 不一定非要clean install  那个出问题了再弄,一般刷新一下maven仓库就行了,最好还是用自己配置的maven,不容易出问题