FunDA(16)- 示范:整合并行运算 - total parallelism solution
在对上两篇讨论中我们介绍了并行运算的两种体现方式:并行构建数据源及并行运算用户自定义函数。我们分别对这两部分进行了示范。本篇我准备示范把这两种情况集成一体的并行运算模式。这次介绍的数据源并行构建方式也与前面描述的有所不同:在前面讨论里我们预知需要从三个独立流来并行构建数据源。但如果我们有一个不知长度的数据流,它的每个元素代表不同的数据流,应该如何处理。我们知道在AQMRPT表里有从1999年到2xxx年的空气质量测量数据,我们可以试着并行把按年份生成的数据流构建成一个数据源。直接使用上期示范中的铺垫代码包括NORMAQM表初始化和从STATES和COUNTIES里用名称搜索对应id的函数:
val db = Database.forConfig("h2db") //drop original table schema
val futVectorTables = db.run(MTable.getTables) val futDropTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.drop)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //create new table to refine AQMRawTable
val actionCreateTable = Models.NORMAQMQuery.schema.create
val futCreateTable = db.run(actionCreateTable).andThen {
case Success(_) => println("Table created successfully!")
case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateTable,Duration.Inf) //truncate data, only available in slick 3.2.1
val futTruncateTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.truncate)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //a conceived task for the purpose of resource consumption
//getting id with corresponding name from STATES table
def getStateID(state: String): Int = {
//create a stream for state id with state name
implicit def toState(row: StateTable#TableElementType) = StateModel(row.id,row.name)
val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val stateStream = fda_staticSource(stateSeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case StateModel(stid,stname) => //target row type
if (stname.contains(state)) {
id = stid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
stateStream.appendTask(getid).startRun
id
}
//another conceived task for the purpose of resource consumption
//getting id with corresponding names from COUNTIES table
def getCountyID(state: String, county: String): Int = {
//create a stream for county id with state name and county name
implicit def toCounty(row: CountyTable#TableElementType) = CountyModel(row.id,row.name)
val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val countyStream = fda_staticSource(countySeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case CountyModel(cid,cname) => //target row type
if (cname.contains(state) && cname.contains(county)) {
id = cid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
countyStream.appendTask(getid).startRun
id
}
以及两个用户自定义函数:
//process input row and produce action row to insert into NORMAQM
def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
row match {
case aqm: AQMRPTModel =>
if (aqm.valid) {
val stateId = getStateID(aqm.state)
val countyId = getCountyID(aqm.state,aqm.county)
val action = NORMAQMQuery += NORMAQMModel(,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
fda_next(FDAActionRow(action))
}
else fda_skip
case _ => fda_skip
}
}
//runner for the action rows
val runner = FDAActionRunner(slick.jdbc.H2Profile)
def runInsertAction: FDAUserTask[FDAROW] = row =>
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case _ => fda_skip
}
跟着是本篇新增代码,我们先构建一个所有年份的流:
//create parallel sources
//get a stream of years
val qryYears = AQMRPTQuery.map(_.year).distinct
case class Years(year: Int) extends FDAROW implicit def toYears(y: Int) = Years(y) val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
val yearStream = fda_staticSource(yearSeq)()
下面是一个按年份从AQMRPT表读取数据的函数:
//strong row type
implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid) //shared stream loader when operate in parallel mode
val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _) //loading rows with year yr
def loadRowsInYear(yr: Int) = {
//a new query
val query = AQMRPTQuery.filter(row => row.year === yr)
//reuse same loader
AQMRPTLoader.fda_typedStream(query.result)(db)(, )()
}
我们可以预见多个loadRowsInYear函数实例会共享统一的FDAStreamLoader AQMRPTLoader。用户自定义数据读取函数类型是FDASourceLoader。下面是FDASourceLoader示范代码:
//loading rows by year
def loadRowsByYear: FDASourceLoader = row => {
row match {
case Years(y) => loadRowsInYear(y) //produce stream of the year
case _ => fda_appendRow(FDANullRow)
} }
我们用toParSource构建一个并行数据源:
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear)
用fda_par_source来把并行数据源转换成统一数据流:
//produce a stream from parallel sources
val source = fda_par_source(parSource)()
source是个FDAPipeLine,可以直接运算:source.startRun,也可以在后面挂上多个环节。下面我们把其它两个用户自定义函数转成并行运算函数后接到source后面:
//the following is a process of composition of stream combinators
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear) //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
//produce a stream from parallel sources
val source = fda_par_source(parSource)()
//turn getIdsThenInsertAction into parallel task
val parTasks = source.toPar(getIdsThenInsertAction)
//runPar to produce a new stream
val actionStream =fda_runPar(parTasks)()
//turn runInsertAction into parallel task
val parRun = actionStream.toPar(runInsertAction)
//runPar and carry out by startRun
fda_runPar(parRun)().startRun
下面是本次示范的完整源代码:
import slick.jdbc.meta._
import com.bayakala.funda._
import api._
import scala.language.implicitConversions
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
import scala.concurrent.{Await, Future}
import scala.util.{Failure, Success}
import slick.jdbc.H2Profile.api._
import Models._
import fs2.Strategy object ParallelExecution extends App { val db = Database.forConfig("h2db") //drop original table schema
val futVectorTables = db.run(MTable.getTables) val futDropTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.drop)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //create new table to refine AQMRawTable
val actionCreateTable = Models.NORMAQMQuery.schema.create
val futCreateTable = db.run(actionCreateTable).andThen {
case Success(_) => println("Table created successfully!")
case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateTable,Duration.Inf) //truncate data, only available in slick 3.2.1
val futTruncateTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.truncate)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //a conceived task for the purpose of resource consumption
//getting id with corresponding name from STATES table
def getStateID(state: String): Int = {
//create a stream for state id with state name
implicit def toState(row: StateTable#TableElementType) = StateModel(row.id,row.name)
val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val stateStream = fda_staticSource(stateSeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case StateModel(stid,stname) => //target row type
if (stname.contains(state)) {
id = stid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
stateStream.appendTask(getid).startRun
id
}
//another conceived task for the purpose of resource consumption
//getting id with corresponding names from COUNTIES table
def getCountyID(state: String, county: String): Int = {
//create a stream for county id with state name and county name
implicit def toCounty(row: CountyTable#TableElementType) = CountyModel(row.id,row.name)
val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val countyStream = fda_staticSource(countySeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case CountyModel(cid,cname) => //target row type
if (cname.contains(state) && cname.contains(county)) {
id = cid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
countyStream.appendTask(getid).startRun
id
} //process input row and produce action row to insert into NORMAQM
def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
row match {
case aqm: AQMRPTModel =>
if (aqm.valid) {
val stateId = getStateID(aqm.state)
val countyId = getCountyID(aqm.state,aqm.county)
val action = NORMAQMQuery += NORMAQMModel(,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
fda_next(FDAActionRow(action))
}
else fda_skip
case _ => fda_skip
}
}
//runner for the action rows
val runner = FDAActionRunner(slick.jdbc.H2Profile)
def runInsertAction: FDAUserTask[FDAROW] = row =>
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case _ => fda_skip
} //create parallel sources
//get a stream of years
val qryYears = AQMRPTQuery.map(_.year).distinct
case class Years(year: Int) extends FDAROW implicit def toYears(y: Int) = Years(y) val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
val yearStream = fda_staticSource(yearSeq)() //strong row type
implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid) //shared stream loader when operate in parallel mode
val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _) //loading rows with year yr
def loadRowsInYear(yr: Int) = {
//a new query
val query = AQMRPTQuery.filter(row => row.year === yr)
//reuse same loader
AQMRPTLoader.fda_typedStream(query.result)(db)(, )()
} //loading rows by year
def loadRowsByYear: FDASourceLoader = row => {
row match {
case Years(y) => loadRowsInYear(y) //produce stream of the year
case _ => fda_appendRow(FDANullRow)
} } //start counter
val cnt_start = System.currentTimeMillis() def showRecord: FDAUserTask[FDAROW] = row => {
row match {
case Years(y) => println(y); fda_skip
case aqm: AQMRPTModel =>
println(s"${aqm.year} $aqm")
fda_skip
case FDAActionRow(action) =>
println(s"${action}")
fda_skip
case _ => fda_skip
}
} //the following is a process of composition of stream combinators
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear) //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
//produce a stream from parallel sources
val source = fda_par_source(parSource)()
//turn getIdsThenInsertAction into parallel task
val parTasks = source.toPar(getIdsThenInsertAction)
//runPar to produce a new stream
val actionStream =fda_runPar(parTasks)()
//turn runInsertAction into parallel task
val parRun = actionStream.toPar(runInsertAction)
//runPar and carry out by startRun
fda_runPar(parRun)().startRun println(s"processing 219400 rows parallelly in ${(System.currentTimeMillis - cnt_start)/1000} seconds") }
FunDA(16)- 示范:整合并行运算 - total parallelism solution的更多相关文章
- FunDA(14)- 示范:并行运算,并行数据库读取 - parallel data loading
FunDA的并行数据库读取功能是指在多个线程中同时对多个独立的数据源进行读取.这些独立的数据源可以是在不同服务器上的数据库表,又或者把一个数据库表分成几个独立部分形成的独立数据源.当然,并行读取的最终 ...
- java JDK8 学习笔记——第16章 整合数据库
第十六章 整合数据库 16.1 JDBC入门 16.1.1 JDBC简介 1.JDBC是java联机数据库的标准规范.它定义了一组标准类与接口,标准API中的接口会有数据库厂商操作,称为JDBC驱动程 ...
- SpringBoot学习笔记(16)----SpringBoot整合Swagger2
Swagger 是一个规范和完整的框架,用于生成,描述,调用和可视化RESTful风格的web服务 http://swagger.io Springfox的前身是swagger-springmvc,是 ...
- spring 5.x 系列第16篇 —— 整合dubbo (代码配置方式)
文章目录 一. 项目结构说明 二.项目依赖 三.公共模块(dubbo-ano-common) 四. 服务提供者(dubbo-ano-provider) 4.1 提供方配置 4.2 使用注解@Servi ...
- FunDA(11)- 数据库操作的并行运算:Parallel data processing
FunDA最重要的设计目标之一就是能够实现数据库操作的并行运算.我们先重温一下fs2是如何实现并行运算的.我们用interleave.merge.either这几种方式来同时处理两个Stream里的元 ...
- Total Commander 8.52 Beta 1
Total Commander 8.52 Beta 1http://www.ghisler.com/852_b1.php 10.08.15 Release Total Commander 8.52 b ...
- FunDA(0)- Functional Data Access accessible to all
大数据.多核CPU驱动了函数式编程模式的兴起.因为函数式编程更适合多线程.复杂.安全的大型软件编程.但是,对许多有应用软件开发经验的编程者来说,函数式编程模式是一种全新的.甚至抽象的概念,可能需要很长 ...
- mybatis系列-16-spring和mybatis整合
16.1 整合思路 需要spring通过单例方式管理SqlSessionFactory. spring和mybatis整合生成代理对象,使用SqlSessionFactory创建SqlSess ...
- ThinkPHP与EasyUI整合之三(searchbox):在datagrid中查询指定记录
在datagrid中toolbar添加searchbox查询框,根据列范围查询数据,先看效果图: 1. searchbox采用easyui的Demo例子,再加以js扩展,根据datagrid中的列数据 ...
随机推荐
- 【Web】移动端下拉刷新、上拉加载更多插件
移动网站中常常有的功能:列表的下拉刷新.上拉加载更多 本例介绍一种简单使用的移动端下拉刷新.上拉加载更多插件,下载及参考地址:https://github.com/ximan/dropload 插件依 ...
- GO介绍,环境的配置和安装 简单使用
1. 介绍与安装 Golang 是什么 Go 亦称为 Golang(按照 Rob Pike 说法,语言叫做 Go,Golang 只是官方网站的网址),是由谷歌开发的一个开源的编译型的静态语言. Gol ...
- c#泛型与其他语言的对比(深入理解c#)
1.同c++模板的对比: c++模板有点像是发展到极致的宏.他们非常强大,但代价就是代码膨胀和不易理解. 在c++中使用一个模板时,会为那一套特定的模板实参编译代码,好在模板实参本来就在源代码中一样. ...
- MZOJ 1345 hero
一道宽搜模版题,可写错了两个地方的我只得了56(掩面痛哭) http://10.37.2.111/problem.php?id=1345 先看看正确的 #include <bits/stdc++ ...
- python 函数学习sys.argv[]
sys.argv 参数 「argv」是「argument variable」参数变量的简写形式,一般在命令行调用的时候由系统传递给程序.这个变量其实是一个List列表,argv[0] 一般是“被调用的 ...
- 2018.11.02 洛谷P2661 信息传递(拓扑排序+搜索)
传送门 按照题意模拟就行了. 先拓扑排序去掉不在环上面的点. 剩下的都是简单环了. 于是都dfsdfsdfs一遍求出最短的环就行. 代码: #include<bits/stdc++.h> ...
- 2018.10.29 洛谷P4129 [SHOI2006]仙人掌(仙人掌+高精度)
传送门 显然求出每一个环的大小. Ans=∏i(siz[i]+1)Ans=\prod_i(siz[i]+1)Ans=∏i(siz[i]+1) 注意用高精度存答案. 代码: #include<b ...
- VESA时序与BT1120的区别
在实现内嵌传输的过程中,笔者参考VESA的时序,也就是下图,实现了一个内嵌同步的程序,同步码放在H Back Porch与H Front Porch的后端与前端,但是在传输过程中发现接收端画面不正常. ...
- GDAL读写矢量文件——Python
在Python中使用OGR时,先要导入OGR库,如果需要对中文的支持,还需要导入GDAL库,具体代码如下.Python创建的shp结果如图1所示. 图1 Python创建矢量结果 #-*- codin ...
- Linux批量远程命令和上传下载工具
https://github.com/eyjian/mooon/releases/tag/mooon-tools mooon_ssh:批量远程命令工具,在多台机器上执行指定命令 mooon_uploa ...