[Coci2015]Kamp
Description
HINT
Solution
Code
#include<bits/stdc++.h>
using namespace std;
const int N=+;
typedef long long ll;
const ll inf=(1LL*<<);
int n,m;
struct node{
int nxt,to,val;
}e[*N];
int hd[N],cnt;
void add(int x,int y,int z){
e[++cnt].nxt=hd[x];
e[cnt].val=z;
e[cnt].to=y;
hd[x]=cnt;
}
ll dis[N];
bool exi[N];
bool has[N];
ll f[N],g[N];
ll hf[N],hg[N];
bool oh[N];
ll ans[N];
int ff[N];
void dfs(int x,int fa,ll d){
dis[x]=d;
ll sumf=;
bool fl=false;//fl记录是否是叶子
bool bla=false;//bla记录是否有一个子树里有关键点(不包括自己)
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
fl=true;
dfs(y,x,d+e[i].val);
ff[y]=x;
has[x]|=has[y];
if(has[y]){
bla=true;
sumf+=f[y]+e[i].val*;
}
}
if(!has[x]||!fl||!bla) {
f[x]=g[x]=;return;
}
f[x]=sumf;
g[x]=inf;
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
if(has[y]){
ll now=sumf-f[y]+g[y]-e[i].val;
g[x]=min(g[x],now);
}
}
}
void sol(int x,int fa){
if(x!=){
ll sumf=;
ll valf=;
oh[fa]=;//oh[fa]记得清0,因为可能这个fa会作为多个son的father
if(exi[fa]) oh[fa]=true;
for(int i=hd[fa];i;i=e[i].nxt){
int y=e[i].to;
if(y==x) {
valf=e[i].val;
continue;
}
else if(y==ff[fa]){
if(oh[y]){
oh[fa]=;
sumf+=hf[y]+*e[i].val;
}
}
else{
if(has[y]){
oh[fa]=;
sumf+=f[y]+*e[i].val;
}
}
} hf[fa]=sumf;
hg[fa]=inf;
if(oh[fa]){
bool son=false,bla=false;//son记录除了x是否有儿子。bla同上含义
for(int i=hd[fa];i;i=e[i].nxt){
int y=e[i].to;
if(y==x) continue;
son=true;
if(y==ff[fa]){
if(oh[y]){
bla=true;
ll now=sumf-hf[y]+hg[y]-e[i].val;
hg[fa]=min(hg[fa],now);
}
}
else if(has[y]){
bla=true;
ll now=sumf-f[y]+g[y]-e[i].val;
hg[fa]=min(hg[fa],now);
}
}
if(!son||!bla) hf[fa]=,hg[fa]=;
}
else{
hf[fa]=;
hg[fa]=;
} ll ansf=f[x],ansg=inf;//注意ansg=inf,当有子树至少存在一个关键点,ansg就可以得到正确答案
if(oh[fa]) ansf+=sumf+*valf; for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa){
if(oh[fa]){
ll now=ansf-sumf+hg[fa]-e[i].val;
ansg=min(ansg,now);
}
}
else{
if(has[y]){
ll now=ansf-f[y]+g[y]-e[i].val;
ansg=min(ansg,now);
}
}
} ans[x]=ansg;
}
if(exi[x]&&m==){//全场只有一个关键点,特判,就是0了 ,否则由于ansg的锅,就成了inf
ans[x]=;
}
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
sol(y,x);
} }
int main()
{
scanf("%d%d",&n,&m);int x,y,z;
for(int i=;i<=n-;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);add(y,x,z);
}int t;
for(int i=;i<=m;i++){
scanf("%d",&t);
exi[t]=has[t]=;
}
dfs(,,);
ans[]=g[];
sol(,);
for(int i=;i<=n;i++){
printf("%lld\n",ans[i]);
}
return ;
}
正解:
[Coci2015]Kamp的更多相关文章
- 【BZOJ3743】[Coci2015]Kamp 树形DP
[BZOJ3743][Coci2015]Kamp Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举 ...
- bzoj3743 [Coci2015]Kamp 常州模拟赛d6t2
3743: [Coci2015]Kamp Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 484 Solved: 229[Submit][Status ...
- bzoj3743: [Coci2015]Kamp
首先树dp求出一个点的答案 然后再一遍dfs换根(是叫做换根吗.. 详见代码 #include <iostream> #include <cstdio> #include &l ...
- 2018.09.28 bzoj3743: [Coci2015]Kamp(树形dp)
传送门 这是一道很有意思的题. 我们把所有的关键点都提出来,当成一棵有边权的虚树. 然后发现虚树上除最后不回到虚根的那条路径外外每条边都会被走两遍. 显然要让答案最优,不走的路径应该在虚树的直径上,于 ...
- bzoj 3743: [Coci2015]Kamp【树形dp】
两遍dfs一遍向下,一边向上,分别记录子树内人数a,当前点到所有点的距离b,最大值c和次大值d,最大值子树p 然后答案是2b-c #include<iostream> #include&l ...
- [bzoj3743 Coci2015] Kamp(树形dp)
传送门 Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举行聚会. 聚会结束后需要一辆车从举行聚会的 ...
- [Bzoj3743][Coci2015] Kamp【换根Dp】
Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- jdbc获取blob类型乱码
一.使用场景: mysql数据库字段类型为longblob,在数据库里看中文字符正常,java读取字串的时候发现中文乱码 使用到了activeMq 二.排查: (1)修改eclipse的环境编码为ut ...
- POJ1080
一道字符串DP,然而不需要状压之类的玄学操作 题目大意:给你两个串,由'A','C','G','T'组成,现在你可以在这两个串中的某些位置插入'-',最终要使得它们的长度相等 给出两个字符匹配时的匹配 ...
- 【php增删改查实例】第六节 - 部门管理模块(开始)
sql建表语句详见:https://www.jianshu.com/p/c88077ed9073 1.新建html模板 新建一个空白的txt文档,然后把后缀名改为.html 用任意一个编辑器打开,比如 ...
- 阿里云centos系统中配置mysql,并远程连接到本地的navicat
1.直接使用yum命令下载mysql5.6来进行安装是不能成功的,安装过程会有问题,这里我们需要使用rpm命令来先进下载.下载路径为:http://dev.mysql.com/get/mysql-co ...
- libgdx判断actor与circle是否重叠
实质是检测矩形与circle是否重叠 基本函数,判断点是否在circle中 public static boolean IsInside( float x, float y, Circle circl ...
- Redis简介、安装、配置、启用学习笔记
前一篇文章有介绍关系型数据库和非关系型数据库的差异,现在就来学习一下用的较广的非关系型数据库:Redis数据库 Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-v ...
- 【ORACLE】重写控制文件
[oracle@rac01 ~]$ sqlplus / as sysdba SQL*Plus: Release 11.2.0.4.0 Production on Thu Mar 15 23:45:02 ...
- GIT版本控制工具总结
1.安装GIT 现在的Linux和Unix包括MAC有的已经自带git,没有自带git的话,在Debian或Ubuntu Linux系统下执行sudo apt-get install git或者sud ...
- C#_正则表达式
概述 正则表达式,主要是用符号描述了一类特定的文本(模式).而正则表达式引擎则负责在给定的字符串中,查找到这一特定的文本. 本文主要是列出常用的正则表达式符号,加以归类说明.本文仅仅是快速理解了正则表 ...
- Unity3D Shader 学习笔记(一):初识Shader
第一节:图形处理器简史 GPU发展简史 GPU英文全称Graphic Procssing Unit. T&L变换和光照流水线 可编程GPU GPU的优点和缺点 第二节:Unity Shader ...