[Coci2015]Kamp
Description
HINT
Solution
Code
#include<bits/stdc++.h>
using namespace std;
const int N=+;
typedef long long ll;
const ll inf=(1LL*<<);
int n,m;
struct node{
int nxt,to,val;
}e[*N];
int hd[N],cnt;
void add(int x,int y,int z){
e[++cnt].nxt=hd[x];
e[cnt].val=z;
e[cnt].to=y;
hd[x]=cnt;
}
ll dis[N];
bool exi[N];
bool has[N];
ll f[N],g[N];
ll hf[N],hg[N];
bool oh[N];
ll ans[N];
int ff[N];
void dfs(int x,int fa,ll d){
dis[x]=d;
ll sumf=;
bool fl=false;//fl记录是否是叶子
bool bla=false;//bla记录是否有一个子树里有关键点(不包括自己)
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
fl=true;
dfs(y,x,d+e[i].val);
ff[y]=x;
has[x]|=has[y];
if(has[y]){
bla=true;
sumf+=f[y]+e[i].val*;
}
}
if(!has[x]||!fl||!bla) {
f[x]=g[x]=;return;
}
f[x]=sumf;
g[x]=inf;
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
if(has[y]){
ll now=sumf-f[y]+g[y]-e[i].val;
g[x]=min(g[x],now);
}
}
}
void sol(int x,int fa){
if(x!=){
ll sumf=;
ll valf=;
oh[fa]=;//oh[fa]记得清0,因为可能这个fa会作为多个son的father
if(exi[fa]) oh[fa]=true;
for(int i=hd[fa];i;i=e[i].nxt){
int y=e[i].to;
if(y==x) {
valf=e[i].val;
continue;
}
else if(y==ff[fa]){
if(oh[y]){
oh[fa]=;
sumf+=hf[y]+*e[i].val;
}
}
else{
if(has[y]){
oh[fa]=;
sumf+=f[y]+*e[i].val;
}
}
} hf[fa]=sumf;
hg[fa]=inf;
if(oh[fa]){
bool son=false,bla=false;//son记录除了x是否有儿子。bla同上含义
for(int i=hd[fa];i;i=e[i].nxt){
int y=e[i].to;
if(y==x) continue;
son=true;
if(y==ff[fa]){
if(oh[y]){
bla=true;
ll now=sumf-hf[y]+hg[y]-e[i].val;
hg[fa]=min(hg[fa],now);
}
}
else if(has[y]){
bla=true;
ll now=sumf-f[y]+g[y]-e[i].val;
hg[fa]=min(hg[fa],now);
}
}
if(!son||!bla) hf[fa]=,hg[fa]=;
}
else{
hf[fa]=;
hg[fa]=;
} ll ansf=f[x],ansg=inf;//注意ansg=inf,当有子树至少存在一个关键点,ansg就可以得到正确答案
if(oh[fa]) ansf+=sumf+*valf; for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa){
if(oh[fa]){
ll now=ansf-sumf+hg[fa]-e[i].val;
ansg=min(ansg,now);
}
}
else{
if(has[y]){
ll now=ansf-f[y]+g[y]-e[i].val;
ansg=min(ansg,now);
}
}
} ans[x]=ansg;
}
if(exi[x]&&m==){//全场只有一个关键点,特判,就是0了 ,否则由于ansg的锅,就成了inf
ans[x]=;
}
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
sol(y,x);
} }
int main()
{
scanf("%d%d",&n,&m);int x,y,z;
for(int i=;i<=n-;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);add(y,x,z);
}int t;
for(int i=;i<=m;i++){
scanf("%d",&t);
exi[t]=has[t]=;
}
dfs(,,);
ans[]=g[];
sol(,);
for(int i=;i<=n;i++){
printf("%lld\n",ans[i]);
}
return ;
}
正解:
[Coci2015]Kamp的更多相关文章
- 【BZOJ3743】[Coci2015]Kamp 树形DP
[BZOJ3743][Coci2015]Kamp Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举 ...
- bzoj3743 [Coci2015]Kamp 常州模拟赛d6t2
3743: [Coci2015]Kamp Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 484 Solved: 229[Submit][Status ...
- bzoj3743: [Coci2015]Kamp
首先树dp求出一个点的答案 然后再一遍dfs换根(是叫做换根吗.. 详见代码 #include <iostream> #include <cstdio> #include &l ...
- 2018.09.28 bzoj3743: [Coci2015]Kamp(树形dp)
传送门 这是一道很有意思的题. 我们把所有的关键点都提出来,当成一棵有边权的虚树. 然后发现虚树上除最后不回到虚根的那条路径外外每条边都会被走两遍. 显然要让答案最优,不走的路径应该在虚树的直径上,于 ...
- bzoj 3743: [Coci2015]Kamp【树形dp】
两遍dfs一遍向下,一边向上,分别记录子树内人数a,当前点到所有点的距离b,最大值c和次大值d,最大值子树p 然后答案是2b-c #include<iostream> #include&l ...
- [bzoj3743 Coci2015] Kamp(树形dp)
传送门 Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举行聚会. 聚会结束后需要一辆车从举行聚会的 ...
- [Bzoj3743][Coci2015] Kamp【换根Dp】
Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- Python+Matplotlib制作动画
注: 在"实验设计与数据处理"的课后作业中,有一个数据可视化的作业,利用课程上学习的某种方法找一个二维函数的最大值,并将这个寻找的过程可视化.在作业里面利用了Matplotlib的 ...
- 汇编 inc 和 dec 指令
知识点: inc 加1指令 dec 减1指令 一.加一指令inc inc a 相当于 add a, //i++ 优点 速度比sub指令快,占用空间小 这条指令执行结果影响AF.OF.PF.SF.Z ...
- Arcgis安装要素
1. ArcGIS安装过程中需将用户名改为计算机名,该计算机名称时需要新建对话框. 2. ArcGIS Server安装过程中要设置ArcGISWebServices用户的读写权限,即设置ASP.NE ...
- springboot @PropertySource
@ConfigurationProperties(prefix="person") 默认加载全局配置文件 application.properties或application.ym ...
- 【Orleans开胃菜系列2】连接Connect源码简易分析
[Orleans开胃菜系列2]连接Connect源码简易分析 /** * prism.js Github theme based on GitHub's theme. * @author Sam Cl ...
- STM32下载Bin文件的几种方式
一.STM32 ST-LINK Utility 1.下载安装软件 官网下载地址:http://www.st.com/zh/development-tools/stsw-link004.html 百度网 ...
- 《unity 3D 游戏开发 第二版》宣雨松 分享 pdf下载
链接:https://pan.baidu.com/s/1LfRTGUmaE_lGdcmd6QiZkg 提取码:e2sn
- LintCode——全排列
描述:给定一个数字列表,返回其所有可能的排列. 样例:给出一个列表[1,2,3],其全排列为:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 说明: ...
- SCRUM 12.09 软件工程第二周计划
第二轮迭代的第二周开始了,上一周我们进行了对代码优化的探索与自我审查. 本周,我们有以下两点目标要实现: 1.对客户端进行优化. 2.网络爬虫爬取美团外卖. 客户端优化主要开发人员:高雅智.牛强.彭林 ...
- XCODE 6.1.1 配置GLFW
最近在学习opengl的相关知识.第一件事就是配环境(好烦躁).了解了一下os x下的OpenGL开源库,主要有几个:GLUT,freeglut,GLFW等.关于其详细的介绍可以参考opengl网站( ...