题目描述

给出一个 0 ≤ N ≤ 105 点数、0 ≤ M ≤ 105 边数的有向图,
输出一个尽可能小的点集,使得从这些点出发能够到达任意一点,如果有多个这样的集合,输出这些集合升序排序后字典序最小的。
输入描述:
第一行为两个整数 1 ≤ n, m ≤ 105,接下来 M 行,每行两个整数 1 ≤ u, v ≤ 105表示从点 u 至点 v 有一条有向边。数据保证没有重边、自环。
输出描述:
第一行输出一个整数 z,表示作为答案的点集的大小;
第二行输出 z 个整数,升序排序,表示作为答案的点集。
示例1
输入
7 10
4 5
5 1
2 5
6 5
7 2
4 2
1 2
5 3
3 5
3 6
输出
2
4 7
题意
如上
题解
求有向图的最大强连通加上缩点,输出缩完后每个强连通子集的最小的点即可
强连通分量:有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量
缩点:因为强连通分量中的每两个点都是强连通的,可以将一个强连通分量当做一个超级点
代码
 #include<bits/stdc++.h>
using namespace std;
const int N=1e5+;
vector<int>G[N],id[N]; int low[N],dfn[N],instack[N],st[N],tot,cnt,scc,p;
int belong[N],in[N];
void tarjan(int u)
{
int v;
low[u]=dfn[u]=++tot;//时间戳
st[++cnt]=u;//入栈
instack[u]=;
for(int i=;i<G[u].size();i++)
{
v=G[u][i];
if(!dfn[v])//是否已经访问
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])//已经访问过并且在栈里
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
scc++;//强连通
do{
v=st[cnt--];//出栈
instack[v]=;//v出栈后
belong[v]=scc;//v属于哪个强连通1-scc
id[scc].push_back(v);//当前强连通的子集
}while(u!=v);
}
}
int main()
{
int n,m,u[N],v[N];
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&u[i],&v[i]);
G[u[i]].push_back(v[i]);
}
for(int i=;i<=n;i++)//求所有强连通
if(!dfn[i])//是否已经访问过
tarjan(i);
for(int i=;i<=m;i++)//缩点
{
if(belong[u[i]]==belong[v[i]])continue;
in[belong[v[i]]]++;
}
for(int i=;i<=scc;i++)
sort(id[i].begin(),id[i].end());
vector<int> res;
for(int i=;i<=scc;i++)
if(!in[i])
res.push_back(id[i][]);
printf("%d\n%d",res.size(),res[]);
for(int i=;i<res.size();i++)
printf(" %d",res[i]);
return ;
}

Wannafly挑战赛14 C.可达性(tarjan缩点)的更多相关文章

  1. 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)

    牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...

  2. wannafly挑战赛14

    第一次打wannafly..觉得自己好菜啊... 题目描述 在三维空间中,平面 x = 0, y = 0, z = 0,以及平面 x + y + z = K 围成了一个三棱锥. 整天与整数打交道的小明 ...

  3. Wannafly挑战赛14 - E 并查集维护线性基区间

    给一个1-base数组{a},有N次操作,每次操作会使一个位置无效.一个区间的权值定义为这个区间里选出一些数的异或和的最大值.求在每次操作前,所有不包含无效位置的区间的权值的最大值. 线性基删除不知道 ...

  4. 【HDOJ3861】【Tarjan缩点+最小路径覆盖】

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 The King’s Problem Time Limit: 2000/1000 MS (Java/Oth ...

  5. 【HDOJ2767】【Tarjan缩点】

    http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (Java/O ...

  6. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  7. 【模拟7.16】通讯(tarjan缩点加拓扑排序)

    这题确实水,纯板子,考试意外出错,只拿了暴力分QAQ tarjan缩点加上拓扑排序,注意这里求最短路径时不能用最小生成树 因为是单向边,不然就可能不是一个联通图了.... 1 #include< ...

  8. 洛谷P2341 [USACO03FALL / HAOI2006] 受欢迎的牛 G (tarjan缩点)

    在本题中很明显,给你一个有向图,要用tarjan缩点. 缩点后,一头牛要受到所有牛的欢迎,那么该点的出度要为0,这是容易证明的:如果该点还有出度,比如a连向b,那么a不受到b的欢迎.所以我们要找出度为 ...

  9. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

随机推荐

  1. java配置slf4j日志系统

    首先要导入的包: import: 每个类中加入下面,其中 RdiFtpDownload.class 是当前的类名.class 然后就可以打日志了: 配置 log4j.properties log4j. ...

  2. 尚硅谷springboot学习1-简介

    以前看过springboot的相关知识,当时偷懒没有做笔记,现在忘得已经差不多了,现在趁着过年有时间,再学习一遍,并做下笔记以备忘. 特性 Spring Boot来简化Spring应用开发,约定大于配 ...

  3. ReactiveX 学习笔记(15)使用 Rx.NET + Json.NET 调用 REST API

    JSON : Placeholder JSON : Placeholder (https://jsonplaceholder.typicode.com/) 是一个用于测试的 REST API 网站. ...

  4. 使用karma做多浏览器的UI测试

    avalon1.6开发得差不多,这次使用先进的开发理念进行开发,比如模块化,单元测试什么... ui测试是重要的一环,之前用阿里的totoro,但打开浏览器不方便.于是从webdrieverio, n ...

  5. 原生js上传文件,使用new FormData()

    当创建一个内容较多的表单,表单里面又有了文件上传,文件上传也需要表单提交,单一的上传文件很好操作: <form action="接口" enctype="multi ...

  6. 29.Junit测试框架.md

    目录 作用 使用 单个对象的测试 有步骤的测试 注意 作用 用于简化测试,可以对方法,类,包等范围测试 使用 单个对象的测试 在需要测试的方法上加注解@Test,选中方法,运行里选择junit执行 同 ...

  7. Android-Anim-Playground

    Android-Anim-Playground Latest animation ideas I developed to make apps more attractive. Why having ...

  8. 文字在线转图片二维码的公用API接口

    在线生成网址二维码的API接口: 1.百度网盘(可使用https)       http://pan.baidu.com/share/qrcode?w=150&h=150&url=ht ...

  9. java 基础最全网站

    http://www.runoob.com/java/java-tutorial.html

  10. 多线程 ThreadLocal

    要了解ThreadLocal,首先搞清楚ThreadLocal 是什么?是用来解决什么问题的? ThreadLocal 是线程的局部变量, 是每一个线程所单独持有的,其他线程不能对其进行访问, 通常是 ...