【LOJ】 #2308. 「APIO2017」商旅
题解
分数题可以想到分数规划,我们预处理出从i到j卖什么货物赚的最多,然后把每条边的边权改成“利润 - 效率 × 时间”
用spfa找正环即可
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 300005
#define mo 994711
#define eps 1e-8
//#define ivorysi
using namespace std;
typedef long long int64;
typedef long double db;
typedef unsigned int u32;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,M,K;
int64 g[105][105],h[105][105],inf = 1e14;
int64 B[105][1005],S[105][1005],dis[105];
bool vis[105],mark[105];
struct node {
int to,next;int64 val;
}E[20005];
int head[105],sumE;
void add(int u,int v,int64 c) {
E[++sumE].to = v;
E[sumE].next = head[u];
E[sumE].val = c;
head[u] = sumE;
}
bool SPFA_dfs(int u) {
vis[u] = 1;
mark[u] = 1;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(dis[v] <= dis[u] + E[i].val) {
dis[v] = dis[u] + E[i].val;
if(vis[v]) return false;
if(!SPFA_dfs(v)) return false;
}
}
vis[u] = 0;
return true;
}
bool check(int64 mid) {
memset(head,0,sizeof(head));sumE = 0;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
if(g[i][j] < inf) add(i,j,h[i][j] - g[i][j] * mid);
}
}
memset(vis,0,sizeof(vis));memset(mark,0,sizeof(mark));
for(int i = 1 ; i <= N ; ++i) dis[i] = 0;
for(int i = 1 ; i <= N ; ++i) {
if(!mark[i]) {
if(!SPFA_dfs(i)) return true;
}
}
return false;
}
void Solve() {
read(N);read(M);read(K);
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
g[i][j] = inf;
}
}
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= K ; ++j) {
read(B[i][j]);read(S[i][j]);
}
}
int v,w;int64 t;
for(int i = 1 ; i <= M ; ++i) {
read(v);read(w);read(t);
g[v][w] = t;
}
for(int k = 1 ; k <= N ; ++k) {
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
g[i][j] = min(g[i][j],g[i][k] + g[k][j]);
}
}
}
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
for(int k = 1 ; k <= K ; ++k) {
if(B[i][k] != -1 && S[j][k] != -1) h[i][j] = max(S[j][k] - B[i][k],h[i][j]);
}
}
}
int64 L = 0,R = 1e9;
while(L < R) {
int64 mid = (L + R + 1) >> 1;
if(check(mid)) L = mid;
else R = mid - 1;
}
out(L);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】 #2308. 「APIO2017」商旅的更多相关文章
- 「APIO2017」商旅
「APIO2017」商旅 题目描述 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个商人.科巴有 \(N\) 个集市, ...
- loj2308 「APIO2017」商旅
ref #include <iostream> #include <cstring> #include <cstdio> #include <queue> ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
随机推荐
- 本地开启apache虚拟服务器
一般来说,服务器是可以托管多个网站的,只要服务器开启虚拟主机的功能,原理是根据来源的host进行判断,不同的域名实现不同的文件访问,这样就可以实现一个服务器托管不同网站了,只要服务器的性能和带宽足够强 ...
- 洛谷 P3629 [APIO2010]巡逻 解题报告
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...
- 【洛谷P1491】集合位置
题目大意:求给定的一张无向带权图的次短路. 题解:先跑一遍 spfa 求出从起点到终点的最短路,记录路径.接着枚举删边,并重新跑 spfa,统计最小值即可. 至于为什么 dp 做法不行,暂时还不清楚. ...
- Activiti学习——Activiti与Spring集成
转: Activiti学习——Activiti与Spring集成 与Spring集成 基础准备 目录结构 相关jar包 Activiti的相关jar包 Activiti依赖的相关jar包 Spring ...
- 在angularJs实现批量删除
原理:在js中定义一个数组,然后给每个复选框一个点击事件,点击事件的方法参数有两个,一个是事件源$event,一个是id.点击复选框根据事件源判断是否被选中,然后进而是向这个数组增加或者删除id. $ ...
- 那些年的 网络通信之 TCP/IP 传输控制协议 ip 加 端口 客户端上传文件到服务器端服务器端返回上传成功消息
多线程开启, 客户端通过 Socket 流 上传文件到服务端的一个小程序练习. 1. 抓住阻塞式方法,去调试 2. 获取对应流对象操作对应的对象 这时候自己不能懵,一定要清晰,最好命名就能区别,一搞混 ...
- php银行卡校验
前言银行金卡,维萨和万事达.银联品牌,如果是贷记卡或准贷记卡,一定为16位卡号.而借记卡可以16-19位不等.美国运通卡则不论金卡或是白金卡.普通卡,都是15位卡号.16-19 位卡号校验位采用 Lu ...
- sql查询语句优化
http://www.cnblogs.com/dubing/archive/2011/12/09/2278090.html 最近公司来一个非常虎的dba 10几年的经验 这里就称之为蔡老师吧 在征得 ...
- TED_Topic8:How to control someone else's arm with your brain
By Greg Gage (Neuroscientist) Greg Gage is on a mission to make brain science accessible to all. In ...
- ARC 之内存转换
CHENYILONG Blog ARC 之内存转换 技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http://weibo.com/luohanchenyilo ...