一、题目链接

https://codeforces.com/problemset/problem/1133/E

二、思路

显然要使用dp,因为中间有部分人不会选取。

令$dp[i][j]$表示在前$i$个人里面选择j组所能得到的最大人数。接下来就是0-1背包思想了。

对于第$i$个人,如果不选,那么$dp[i][j]=max(dp[i][j],dp[i-1][j])$;

如果选,那么$dp[i][j]=max(dp[i][j],dp[k][j-1]+i-k),0 \le k < i$。

这转移方程的时间复杂度是$O(N^3)$,显然会超时。

注意到,如果$a[i]==a[i-1]$,如果选择了$a[i-1]$,那么$a[i]$一定会选择。否则$a[i]$一定不会被选择。也就是说,如果两个人的数值相同,要么这两个人同时被选,要么同时都不被选。那么,可以对整个$a$数组去重,并记录每个数值代表的人数。令$a'$为去重后的数组,对于去重后的数组$a'$,上述式子$k$的选取不超过$5$,然后,把转移的代价由$i-k$改为$\sum\limits_{x=k+1}^{i}cnt[a'[x]]$即可。

三、代码

#include<bits/stdc++.h>

using namespace std;
;
int n, k;
int a[N];
int dp[N][N];
unordered_map<int, int> cnt;

int main() {
    cin >> n >> k;
    ; i < n; ++i)scanf("%d", a + i), cnt[a[i]]++;
    sort(a, a + n);
    int m = unique(a, a + n) - a;
    ; i < m; ++i) {
        ; j <= k; ++j) {
            ;
            ; x--) {
                )break;
                cc += cnt[a[x]];
                )dp[i][j] = max(dp[i][j], dp[i - ][j]);
                )dp[i][j] = max(dp[i][j], dp[x - ][j - ] + cc);
                )dp[i][j] = max(dp[i][j], cc);
            }
        }
    }
    cout << dp[m - ][k] << endl;
    ;
}
/*

 6 1
 2 7 12 13 14 12

 11 4
 2 7 13 12 15 17 23 24 25 31 36

 7 2
 2 4 10 11 17 18 19

 7 1
 1 1 1 6 6 6 7

 11 2
 1 2 2 7 9 15 16 23 24 23 25

**/

Round544div3E(1133E)的更多相关文章

  1. codeforces 1133E K Balanced Teams

    题目链接:http://codeforces.com/contest/1133/problem/E 题目大意: 在n个人中找到k个队伍.每个队伍必须满足最大值减最小值不超过5.求满足条件k个队伍人数的 ...

  2. K Balanced Teams CodeForces - 1133E (Dp)

    题意: 给出 n 个数,选取其中若干个数分别组成至多 k 组,要求每组内最大值与最小值的差值不超过5,求最后被选上的总人数. 题解: 将a[1∼n] 从小到大排序, f[i][j] 表示到第 i 个数 ...

  3. Codeforces 1133E - K Balanced Teams - [DP]

    题目链接:https://codeforces.com/contest/1133/problem/C 题意: 给出 $n$ 个数,选取其中若干个数分别组成 $k$ 组,要求每组内最大值与最小值的差值不 ...

随机推荐

  1. MySQL 8.0支持DDL原子化

    在MySQL 5.5/5.6/5.7版本中,DDL操作是非原子型操作,在执行过程中遇到实例故障重启,可能导致DDL没有完成也没有回滚.如 1.执行DROP TABLE T1,T2操作,实例重启恢复后, ...

  2. PHP用curl发送get post put delete patch请求

    function getUrl($url){ $headerArray = array("Content-type:application/json;", "Accept ...

  3. h5新增内容

    1.新的input type值 email url search tel color range number date month week time datetime datetime-local ...

  4. 获取当前 服务 路径 .net

    using System; //例如 AppDomain.CurrentDomain.BaseDirectory + "\\Setting.ini";

  5. Hanlp自然语言处理工具的使用演练

    Hanlp是由一系列模型与算法组成的工具包,目标是普及自然语言处理在生产环境中的应用.Hanlp具备功能完善.性能高效.架构清洗.语料时新.可自定义的特点:提供词法分析(中文分词.磁性标注.命名实体识 ...

  6. c#根据手机号查归属地

    可调用接口参考地址(没有免费的午餐): https://www.juhe.cn/docs/api/id/11 http://vip.showji.com/locating/?m=13606401549 ...

  7. nvm环境配置

    安装nvm curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/install.sh | bash nvm insta ...

  8. 利用curl 模拟多线程

    所谓多线程就是多个 程序同时运行,单线程:执行一段逻辑,等待完成后 在执行另外一个. 多线程:几个逻辑同时进行处理,不需要相互等待,提高了总的执行时间 接下来就用curl实现多线程 实现逻辑 1. f ...

  9. Python Selenium set Chrome Preference Download Location.

    def set_chrome_pref(self): chromeOptions = webdriver.ChromeOptions() prefs = {"download.default ...

  10. bzoj4940: [Ynoi2016]这是我自己的发明

    用dfs序把询问表示成询问dfs序的两个区间中的信息 拆成至多9个询问(询问dfs序的两个前缀),对这些询问用莫队处理,时间复杂度$O(n\sqrt{m})$ #include<bits/std ...