BZOJ2468 : [中山市选2010]三核苷酸
令d[i]为第i个样本数据,cnt为样本个数,经过化简可得
\[ans=\frac{\sum(d[i]^2)}{cnt}-(\frac{\sum d[i]}{cnt})^2\]
枚举每一种可能的三核苷酸,得到它出现的各个位置,假设当前出现了tot个,第i个的编号为a[i],经过化简可得
\[cnt+=C_{tot}^2\]
\[\sum d[i]+=\sum (a[i+1]-a[i])i(tot-i)\]
\[\sum (d[i]^2)+=tot\sum(a[i]^2)-(\sum a[i])^2\]
时间复杂度$O(n)$。
#include<cstdio>
#include<cstring>
#define N 100010
typedef long long ll;
int T,n,i,j,tot[64],q[64][N];ll cnt,sumd,sumd2,s,s2;char a[N];
inline ll C2(ll x){return x*(x-1)/2;}
inline ll sqr(ll x){return x*x;}
double sqr(double x){return x*x;}
double solve(){
scanf("%s",a+1);n=strlen(a+1);
for(i=1;i<=n;i++){
if(a[i]=='A')a[i]=0;
else if(a[i]=='G')a[i]=1;
else if(a[i]=='C')a[i]=2;
else a[i]=3;
}
for(cnt=sumd=sumd2=i=0;i<64;i++)tot[i]=0;
for(i=1;i<n-1;i++)j=a[i]|(a[i+1]<<2)|(a[i+2]<<4),q[j][++tot[j]]=i;
for(i=0;i<64;i++)if(tot[i]>=2){
cnt+=C2(tot[i]);
for(j=1;j<tot[i];j++)sumd+=1LL*(q[i][j+1]-q[i][j])*j*(tot[i]-j);
for(s=s2=0,j=1;j<=tot[i];j++)s+=q[i][j],s2+=sqr(1LL*q[i][j]);
sumd2+=s2*tot[i]-sqr(s);
}
if(!cnt)return 0;
return 1.0*sumd2/cnt-sqr(1.0*sumd/cnt);
}
int main(){
for(scanf("%d",&T);T--;printf("%.6f\n",solve()));
return 0;
}
BZOJ2468 : [中山市选2010]三核苷酸的更多相关文章
- bzoj 2468: [中山市选2010]三核苷酸
2468: [中山市选2010]三核苷酸 Description 三核苷酸是组成DNA序列的基本片段.具体来说,核苷酸一共有4种,分别用’A’,’G’,’C’,’T’来表示.而三核苷酸就是由3个核苷酸 ...
- BZOJ 2467: [中山市选2010]生成树 [组合计数]
2467: [中山市选2010]生成树 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 638 Solved: 453[Submit][Status][ ...
- BZOJ_2467_[中山市选2010]生成树_数学
BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...
- [bzoj2467][中山市选2010]生成树_快速幂
生成树 bzoj-2467 中山市选2010 题目大意:题目链接 注释:略. 想法:首先,考虑生成树的性质.每两个点之间有且只有一条路径.我们将每个五边形的5条边分为外面的4条边和内部的一条边,在此简 ...
- BZOJ 2467: [中山市选2010]生成树
有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...
- bzoj2467: [中山市选2010]生成树
Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角 ...
- [BZOJ2467] [中山市选2010] 生成树 (排列组合)
Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角 ...
- 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)
传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
随机推荐
- hdu 3022 Sum of Digits
http://acm.hdu.edu.cn/showproblem.php?pid=3022 题意: 最多不超过10000组数据,每组数据给定两个数n,m,求一个最小的数,使得该数每一位之和等于n,每 ...
- Codeforces 543 B. World Tour
http://codeforces.com/problemset/problem/543/B 题意: 给定一张边权均为1的无向图. 问至多可以删除多少边,使得s1到t1的最短路不超过l1,s2到t2的 ...
- 内网服务器通过Squid代理访问外网
环境说明 项目整体需部署Zabbix监控并配置微信报警,而Zabbix Server并不能访问外网,故运维小哥找了台能访问外网的服务器做Suqid代理,Zabbix Server服务器通过代理服务器访 ...
- Spring Cloud (十五)Stream 入门、主要概念与自定义消息发送与接收
前言 不写随笔的日子仿佛就是什么都没有产出一般--上节说到要学Spring Cloud Bus,这里发现按照官方文档的顺序反而会更好些,因为不必去后边的章节去为当前章节去打基础,所以我们先学习Spri ...
- JavaScript Cookies取值
http://www.w3school.com.cn/js/js_cookies.asp
- 移动option标签
<%@ page language="java" pageEncoding="UTF-8"%> <%@taglib uri="/st ...
- 关于mysql-connector-java(JDBC驱动)的一些坑
最近在写一个项目的时候,用了maven仓库里面较新的mysql的JDBC驱动,版本是6.0.6,Mybatis的全局配置是这么写的: <?xml version='1.0' encoding=' ...
- [HNOI2013]比赛 (用Hash实现记忆化搜索)
[HNOI2013]比赛 题目描述 沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛.此次联 赛共N支球队参加,比赛规则如下: (1) 每两支球队之间踢一场比赛. (2) 若平局, ...
- Django之模板语法
Django框架之第三篇模板语法(重要!!!) 一.什么是模板? 只要是在html里面有模板语法就不是html文件了,这样的文件就叫做模板. 二.模板语法分类 一.模板语法之变量:语法为 {{ }}: ...
- C - Balanced Number HDU - 3709 (数位dp)
题目链接:https://cn.vjudge.net/contest/278036#problem/C 题目大意:手首先是T组数据,然后每一次输入两个数l,r,求这个区间里面满足以某个数字为中心的两侧 ...