BZOJ2468 : [中山市选2010]三核苷酸
令d[i]为第i个样本数据,cnt为样本个数,经过化简可得
\[ans=\frac{\sum(d[i]^2)}{cnt}-(\frac{\sum d[i]}{cnt})^2\]
枚举每一种可能的三核苷酸,得到它出现的各个位置,假设当前出现了tot个,第i个的编号为a[i],经过化简可得
\[cnt+=C_{tot}^2\]
\[\sum d[i]+=\sum (a[i+1]-a[i])i(tot-i)\]
\[\sum (d[i]^2)+=tot\sum(a[i]^2)-(\sum a[i])^2\]
时间复杂度$O(n)$。
#include<cstdio>
#include<cstring>
#define N 100010
typedef long long ll;
int T,n,i,j,tot[64],q[64][N];ll cnt,sumd,sumd2,s,s2;char a[N];
inline ll C2(ll x){return x*(x-1)/2;}
inline ll sqr(ll x){return x*x;}
double sqr(double x){return x*x;}
double solve(){
scanf("%s",a+1);n=strlen(a+1);
for(i=1;i<=n;i++){
if(a[i]=='A')a[i]=0;
else if(a[i]=='G')a[i]=1;
else if(a[i]=='C')a[i]=2;
else a[i]=3;
}
for(cnt=sumd=sumd2=i=0;i<64;i++)tot[i]=0;
for(i=1;i<n-1;i++)j=a[i]|(a[i+1]<<2)|(a[i+2]<<4),q[j][++tot[j]]=i;
for(i=0;i<64;i++)if(tot[i]>=2){
cnt+=C2(tot[i]);
for(j=1;j<tot[i];j++)sumd+=1LL*(q[i][j+1]-q[i][j])*j*(tot[i]-j);
for(s=s2=0,j=1;j<=tot[i];j++)s+=q[i][j],s2+=sqr(1LL*q[i][j]);
sumd2+=s2*tot[i]-sqr(s);
}
if(!cnt)return 0;
return 1.0*sumd2/cnt-sqr(1.0*sumd/cnt);
}
int main(){
for(scanf("%d",&T);T--;printf("%.6f\n",solve()));
return 0;
}
BZOJ2468 : [中山市选2010]三核苷酸的更多相关文章
- bzoj 2468: [中山市选2010]三核苷酸
2468: [中山市选2010]三核苷酸 Description 三核苷酸是组成DNA序列的基本片段.具体来说,核苷酸一共有4种,分别用’A’,’G’,’C’,’T’来表示.而三核苷酸就是由3个核苷酸 ...
- BZOJ 2467: [中山市选2010]生成树 [组合计数]
2467: [中山市选2010]生成树 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 638 Solved: 453[Submit][Status][ ...
- BZOJ_2467_[中山市选2010]生成树_数学
BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...
- [bzoj2467][中山市选2010]生成树_快速幂
生成树 bzoj-2467 中山市选2010 题目大意:题目链接 注释:略. 想法:首先,考虑生成树的性质.每两个点之间有且只有一条路径.我们将每个五边形的5条边分为外面的4条边和内部的一条边,在此简 ...
- BZOJ 2467: [中山市选2010]生成树
有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...
- bzoj2467: [中山市选2010]生成树
Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角 ...
- [BZOJ2467] [中山市选2010] 生成树 (排列组合)
Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角 ...
- 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)
传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
随机推荐
- C#获取文件超大图标256*256(转)
从Bing搜索得到,保存于此 using System; using System.Collections.Generic; using System.Linq; using System.Text; ...
- HDU 3595 every-sg模型
多个子游戏同时进行,每个子游戏给出两个数a,b,可以将大的数减去k倍小的数,不能操作者输. 策略就是对于一个必胜的游戏要使得步数更长,对于一个必败的游戏使得步数最短. 以下都来自贾志豪的论文.. 对于 ...
- git 查看一个分支是否被合并过
1.查看该分支的提交历史 git log 分支名 2.git log master |grep comitid 如果包含,就证明已经合并过 3.git branch -d 分支名,如果报错,就是没合并 ...
- javascript公有静态成员
公共静态成员在javascript中并没有特殊语法来表示静态成员.但是可以通过使用构造函数向其添加属性这种方式. //构造函数 var Gadget = function(){}; //静态方法 Ga ...
- 天气窗件展示 -一个HTML5 地理位置应用的例子
定位及地理位置信息是LBS应用的核心,和定位功能有所不同的是地理位置信息更关注如何得到有意义的信息.(例如一条街道的地址) 从这边文章里你会学到HTML5地理位置信息的各种功能.它 ...
- [python]文件操作read&readline&readlines
(1)read是将整个文件读入内存,将整个文件的内容当作一个字符串 (2)readline是一行一行的读如内存,每一次读的一行为一个字符串 (3)readlines是一次将整个文件读入内存,但是将整个 ...
- es6笔记(1) 概要
什么是ES6 ECMAScript 6.0 (简称ES6) 是继ECMAScript 5.1以后的javascript 语言的下一代标准,在2015年6月份发布. 他的目标是使javascript语言 ...
- 如何让你的.vue在sublime text 3 中变成彩色?
作者:青鲤链接:https://www.zhihu.com/question/52215834/answer/129495890来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...
- linux系统上次启动时间查看
uptime [root@node2 ~]# uptime 18:58:47 up 12 min, 2 users, load average: 0.01, 0.07, 0.07 [root@node ...
- 【网络编程】使用getnameinfo()/getaddrinfo()/InetPton()
1.简要 从前用的网络编程函数现在又做了一定的改动,报了这么3个错误. error C4996: 'inet_ntoa': Use inet_ntop() or InetNtop() instead ...