题目链接


Description

  求$$\sum_{i=1}n\sum_{j=1}m\gcd(i,j)K \mod 109+7$$

Solution

前面部分依旧套路。

\[\begin{aligned}\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K&=\sum_{d=1}^{min(n,m)}d^K\sum_{i=1}^n\sum_{j=1}^m\left[(i,j)=d\right]\\&=\sum_{d=1}^{min(n,m)}d^K\sum_{i=1}^{min(\lfloor\frac{n}{d}\rfloor),\lfloor\frac{m}{d}\rfloor)}\mu(i)\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{id}\rfloor\\&=\sum_{T=1}^{min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d\mid T}d^K\mu(\frac{T}{d})\end{aligned}
\]

  这数据范围比较大,后面没法枚举约数求。因为是个狄利克雷卷积的形式,而且\(d^K,\mu\)都是积性函数,所以\(F(T)=\sum_{d\mid T}d^K*\mu(\frac{T}{d})\)也是积性函数,可以线性筛。

  若\(a,b\)互质,则\(F(ab)=F(a)*F(b)\);

  若\(a,b\)不互质,考虑同一个质因数,即\(F(p_i^{k_i})=\mu(1)\times\left(p_i^{k_i}\right)^K+\mu(p_i)\times\left(p_i^{k_i-1}\right)^K\),后面项的\(\mu()\)都是0了。

  所以\(F(p_i^{k_i}\times p_i)=F(p_i^{k_i})\times p_i^{K}\)。而当\(p_i,p_j\)不同时,它们互质,直接乘起来就好了。

挂个链接:https://www.cnblogs.com/zwfymqz/p/9337898.html。


//49648kb	16248ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define MAX 5000000
#define mod (1000000007)
const int N=5e6+5; int cnt,P[N>>3],mu[N],F[N],pw[N>>3];
bool not_P[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=1ll*x*x%mod)
if(k&1) t=1ll*t*x%mod;
return t;
}
void Pre(int K)
{
F[1]=mu[1]=1;
for(int i=2; i<=MAX; ++i)
{
if(!not_P[i])
P[++cnt]=i, mu[i]=-1, pw[cnt]=FP(i,K), F[i]=(pw[cnt]-1)%mod;
for(int v,j=1; j<=cnt&&(v=i*P[j])<=MAX; ++j)
{
not_P[v]=1;
if(i%P[j]) mu[v]=-mu[i], F[v]=1ll*F[i]*F[P[j]]%mod;
else {mu[v]=0, F[v]=1ll*F[i]*pw[j]%mod; break;}
}
}
for(int i=2; i<=MAX; ++i) F[i]+=F[i-1], F[i]>=mod&&(F[i]-=mod);
} int main()
{
int T=read(),K=read(); Pre(K);
for(int n,m; T--; )
{
n=read(), m=read();
long long res=0;
for(int i=1,nxt,lim=std::min(n,m); i<=lim; i=nxt+1)
{
nxt=std::min(n/(n/i),m/(m/i));
res+=1ll*(F[nxt]-F[i-1])*(n/i)%mod*(m/i)%mod;
}
printf("%lld\n",(res%mod+mod)%mod);
}
return 0;
}

BZOJ.4407.于神之怒加强版(莫比乌斯反演)的更多相关文章

  1. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  2. BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]

    题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...

  3. BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数

    Description 给下N,M,K.求     Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...

  4. bzoj 4407 于神之怒加强版 (反演+线性筛)

    于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1184  Solved: 535[Submit][Status][Discuss] D ...

  5. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  6. ●BZOJ 4407 于神之怒加强版

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...

  7. BZOJ4407 于神之怒加强版 - 莫比乌斯反演

    题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...

  8. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  9. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

随机推荐

  1. [Spring] 学习Spring Boot之一:基本使用及简析

    一.简介 使用 Spring Boot 目的主要是用来简化 Spring 应用的搭建及开发过程,因为使用 Spring 及 SpringMVC 框架时需要手动配置的地方非常多(各种包之间的依赖.各种配 ...

  2. spring cloud 微服务架构 简介

     Spring Cloud 1. Spring Cloud 简介 Spring Cloud是在Spring Boot的基础上构建的,用于简化分布式系统构建的工具集,为开发人员提供快速建立分布式系统中的 ...

  3. bzoj千题计划205:bzoj1966: [Ahoi2005]VIRUS 病毒检测

    http://www.lydsy.com/JudgeOnline/problem.php?id=1966 f[i][j] 表示s的前i个和t的前j个是否匹配 转移看代码 注意初始化: f[0][0]= ...

  4. LaTeX文章结构

    %导言 %\documentclass{article} %ctexbook \documentclass{ctexbook} \title{\heiti 监督学习} % 黑体 \author{\ka ...

  5. PHP-PSR-[0-4]代码规范

    PHP-FIG 在说啥是PSR-[0-4]规范的之前,我觉得我们有必要说下它的发明者和规范者:PHP-FIG,它的网站是:www.php-fig.org.就是这个联盟组织发明和创造了PSR-[0-4] ...

  6. html5 canvas 多个填充渐变形状

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. [转载]Understanding the Bootstrap 3 Grid System

    https://scotch.io/tutorials/understanding-the-bootstrap-3-grid-system With the 3rd version of the gr ...

  8. jmeter的环境配置

    工具/原料   WIN7 Jmeter安装包 JDK 一.安装JDK   1 [步骤一]安装jdk 1.下载jdk,到官网下载jdk,地址:http://www.oracle.com/technetw ...

  9. Dream_Spark版本定制第一课

    从今天起,我们踏上了新的Spark学习旅途.我们的目标是要像Spark官方机构那样有能力去定制Spark. 一.  我们最开始将从Spark Streaming入手. 为何从Spark Streami ...

  10. 001_nginx常用参数查询

    一.underscores_in_headers on; Nginx 默认把名称包含下划线的 Headers 视为无效,直接移除.如果你希望让这类型的信息生效,那你要把 underscores_in_ ...