[POI2013]Usuwanka

题目大意:

一排\(n\)个球,有黑白两种颜色。每取走一个球会在原位置放一个水晶球。求构造一种取球方案,满足:

  1. 每次取走\(k\)个白球和\(1\)个黑球;
  2. 一次取走的任意两个球之间没有水晶球。

保证方案存在。

思路:

用栈维护黑球的出现次数,若栈顶\(k+1\)个数中恰好有\(1\)个黑球,说明这些球可以一次性取出。

时间复杂度\(\mathcal O(n)\)。

源代码:

#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
inline bool getval() {
register char ch;
while(!isalpha(ch=getchar()));
return ch=='c';
}
const int N=1e6+1;
int sum[N],ans[N],stk[N];
int main() {
const int n=getint(),k=getint();
for(register int i=1;i<=n;i++) {
stk[++stk[0]]=i;
sum[stk[0]]=sum[stk[0]-1]+getval();
if(stk[0]>=k+1&&sum[stk[0]]-sum[stk[0]-k-1]==1) {
for(register int i=0;i<=k;i++) {
ans[++ans[0]]=stk[stk[0]--];
}
}
}
for(register int i=n;i>=1;i--) {
printf("%d%c",ans[i]," \n"[i%(k+1)==1]);
}
return 0;
}

[POI2013]Usuwanka的更多相关文章

  1. [POI2013]Łuk triumfalny

    [POI2013]Łuk triumfalny 题目大意: 一棵\(n(n\le3\times10^5)\)个结点的树,一开始\(1\)号结点为黑色.\(A\)与\(B\)进行游戏,每次\(B\)能选 ...

  2. [POI2013]Polaryzacja

    [POI2013]Polaryzacja 题目大意: 给定一棵\(n(n\le250000)\)个点的树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从\(u\)到达\(v\)的点 ...

  3. [POI2013]Taksówki

    [POI2013]Taksówki 题目大意: ABC三地在同一条直线上,AC相距\(m(m\le10^{18})\)米,AB相距\(d\),B在AC之间.总共有\(n(n\le5\times10^5 ...

  4. [POI2013]Morskie opowieści

    [POI2013]Morskie opowieści 题目大意: 一个\(n(n\le5000)\)点\(m(m\le5000)\)边无向图,边权均为\(1\),有\(k(k\le10^6)\)个询问 ...

  5. [POI2013]Bajtokomputer

    [POI2013]Bajtokomputer 题目大意: 给定一个长度为\(n(n\le10^6)\)的由\(\{-1,0,1\}\)组成的序列,你可以进行\(A_i+=A_{i-1}\)这样的操作, ...

  6. POI2013题解

    POI2013题解 只做了BZ上有的\(13\)道题. 就这样还扔了两道神仙构造和一道计算几何题.所以只剩下十道题了. [BZOJ3414][Poi2013]Inspector 肯定是先二分答案,然后 ...

  7. 【BZOJ3416】Poi2013 Take-out 栈

    [BZOJ3416]Poi2013 Take-out Description 小F喜欢玩一个消除游戏——take-out 保证k+1|n,保证输入数据有解这是一个单人游戏 游戏者的目标是消除初始时给定 ...

  8. 【BZOJ3417】Poi2013 Tales of seafaring 分层图BFS

    [BZOJ3417]Poi2013 Tales of seafaring Description 一个n点m边无向图,边权均为1,有k个询问 每次询问给出(s,t,d),要求回答是否存在一条从s到t的 ...

  9. 【BZOJ3425】Poi2013 Polarization 猜结论+DP

    [BZOJ3425]Poi2013 Polarization Description 给定一棵树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从u到达v的点对(u,v)个数.求最小 ...

随机推荐

  1. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  2. bzoj千题计划186:bzoj1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 #include<cmath> #include<cstdio> #i ...

  3. OpenGL ES 2.0 Shader 调试新思路(一): 改变提问方式

    OpenGL ES 2.0 Shader 调试新思路(一): 改变提问方式 --是什么(答案是具体值) VS 是不是(答案是布尔值) 目录 背景介绍 问题描述 Codea 是 iPad 上的一款很方便 ...

  4. html5 canvas旋转+缩放

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. P4549 【模板】裴蜀定理

    题目描述 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1X1+...AnXn>0,且S的值最小 输入输出格式 输入格式: 第一行给出数字N,代表有N个数 下面一行给出 ...

  6. Java内存模型-锁的内存语义

    一 引言 在说volatile的内存语义时,讲过这样一句话:想要理解透volatile特性有一个很好的方法,就是把对volatile变量的单个读/写,看成是使用同一个锁对这些单个读/写操作做了同步.所 ...

  7. python3之模块io使用流的核心工具

    1.io概叙 io模块提供了python用于处理各种类型I/O的主要工具,主要有三种类型的I/O:文本I/O,二进制I/O和原始I/O:这些都是通用类型,各种后备存储可使用其中的每一种类型,所以这些类 ...

  8. Plus One & Plus One Linked List

    Given a non-negative number represented as an array of digits, plus one to the number. The digits ar ...

  9. linux usb枚举过程分析之守护进程及其唤醒【转】

    转自:http://blog.csdn.net/xuelin273/article/details/38646765 usb热插拔,即usb设备可以实现即插即用,像U盘一样,插到电脑里就可以用,不用时 ...

  10. MongoDB 3.x 安装及权限验证

    1.首先在网上下载MongoDB的安装包,我这边使用的是3.2版本: 2.安装MongoDB安装程序,安装完成后设置环境变量,我这边的安装路径是:“C:\Program Files\MongoDB\S ...