[POI2013]Usuwanka

题目大意:

一排\(n\)个球,有黑白两种颜色。每取走一个球会在原位置放一个水晶球。求构造一种取球方案,满足:

  1. 每次取走\(k\)个白球和\(1\)个黑球;
  2. 一次取走的任意两个球之间没有水晶球。

保证方案存在。

思路:

用栈维护黑球的出现次数,若栈顶\(k+1\)个数中恰好有\(1\)个黑球,说明这些球可以一次性取出。

时间复杂度\(\mathcal O(n)\)。

源代码:

#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
inline bool getval() {
register char ch;
while(!isalpha(ch=getchar()));
return ch=='c';
}
const int N=1e6+1;
int sum[N],ans[N],stk[N];
int main() {
const int n=getint(),k=getint();
for(register int i=1;i<=n;i++) {
stk[++stk[0]]=i;
sum[stk[0]]=sum[stk[0]-1]+getval();
if(stk[0]>=k+1&&sum[stk[0]]-sum[stk[0]-k-1]==1) {
for(register int i=0;i<=k;i++) {
ans[++ans[0]]=stk[stk[0]--];
}
}
}
for(register int i=n;i>=1;i--) {
printf("%d%c",ans[i]," \n"[i%(k+1)==1]);
}
return 0;
}

[POI2013]Usuwanka的更多相关文章

  1. [POI2013]Łuk triumfalny

    [POI2013]Łuk triumfalny 题目大意: 一棵\(n(n\le3\times10^5)\)个结点的树,一开始\(1\)号结点为黑色.\(A\)与\(B\)进行游戏,每次\(B\)能选 ...

  2. [POI2013]Polaryzacja

    [POI2013]Polaryzacja 题目大意: 给定一棵\(n(n\le250000)\)个点的树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从\(u\)到达\(v\)的点 ...

  3. [POI2013]Taksówki

    [POI2013]Taksówki 题目大意: ABC三地在同一条直线上,AC相距\(m(m\le10^{18})\)米,AB相距\(d\),B在AC之间.总共有\(n(n\le5\times10^5 ...

  4. [POI2013]Morskie opowieści

    [POI2013]Morskie opowieści 题目大意: 一个\(n(n\le5000)\)点\(m(m\le5000)\)边无向图,边权均为\(1\),有\(k(k\le10^6)\)个询问 ...

  5. [POI2013]Bajtokomputer

    [POI2013]Bajtokomputer 题目大意: 给定一个长度为\(n(n\le10^6)\)的由\(\{-1,0,1\}\)组成的序列,你可以进行\(A_i+=A_{i-1}\)这样的操作, ...

  6. POI2013题解

    POI2013题解 只做了BZ上有的\(13\)道题. 就这样还扔了两道神仙构造和一道计算几何题.所以只剩下十道题了. [BZOJ3414][Poi2013]Inspector 肯定是先二分答案,然后 ...

  7. 【BZOJ3416】Poi2013 Take-out 栈

    [BZOJ3416]Poi2013 Take-out Description 小F喜欢玩一个消除游戏——take-out 保证k+1|n,保证输入数据有解这是一个单人游戏 游戏者的目标是消除初始时给定 ...

  8. 【BZOJ3417】Poi2013 Tales of seafaring 分层图BFS

    [BZOJ3417]Poi2013 Tales of seafaring Description 一个n点m边无向图,边权均为1,有k个询问 每次询问给出(s,t,d),要求回答是否存在一条从s到t的 ...

  9. 【BZOJ3425】Poi2013 Polarization 猜结论+DP

    [BZOJ3425]Poi2013 Polarization Description 给定一棵树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从u到达v的点对(u,v)个数.求最小 ...

随机推荐

  1. C语言复习---选择法排序

    选择排序也是一种简单直观的排序算法 它的工作原理很容易理解:初始时在序列中找到最小(大)元素,放到序列的起始位置作为已排序序列:然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾. ...

  2. JeeSite 4.x 树形结构的表设计和用法

    有些同仁对于 JeeSite 4 中的树表设计不太了解,本应简单的方法就可实现,却写了很多复杂的语句和代码,所以有了这篇文章. 在 JeeSite 4 中的树表设计我还是相对满意的,这种设计比较容易理 ...

  3. bzoj千题计划239:bzoj4069: [Apio2015]巴厘岛的雕塑

    http://www.lydsy.com/JudgeOnline/problem.php?id=4069 a!=1: 从高位到低位一位一位的算 记录下哪些位必须为0 dp[i][j] 表示前i个数分为 ...

  4. VS之解决方案文件夹

    Visual Studio提供了一种特殊的文件夹,它可以帮助组织大型解决方案.它们的名称也恰如其分,叫做“解决方案文件夹”. 注意   解决方案文件夹是解决方案资源管理器中的一种组织工具,创建这样的文 ...

  5. ASP.NET记录错误日志的方式

    程序记录错误日志是一种看起来对一般用户没什么作用,但对程序开发者用处很大的东西,它能查出错误或异常的程序马迹.那么,常用的记录错误日志的方式有哪些呢? 大多数情况下使用的是 1.直接记录为txt/xm ...

  6. CSS3 响应式布局: @media (min/max-width:***) @font-face

    响应式布局 responsive design @media 属性 bootstrap  css 分析: @media (min-width:768px){ body{***} } use @medi ...

  7. 【洛谷P3884 [JLOI2009]】二叉树问题

    题目描述 如下图所示的一棵二叉树的深度.宽度及结点间距离分别为: 深度:4 宽度:4(同一层最多结点个数) 结点间距离: ⑧→⑥为8 (3×2+2=8) ⑥→⑦为3 (1×2+1=3) 注:结点间距离 ...

  8. Dream_Spark定制第二课

    Spark版本定制第2天:通过案例对SparkStreaming透彻理解之二 本期内容: 1 解密Spark Streaming运行机制 2 解密Spark Streaming架构 一切不能进行实时流 ...

  9. linux服务器账号密码正确无法登录

    登录服务器时,发现密码错误,输入后还是错误不能登录 最后发现登录日志中有pam_tally2(sshd:auth): user root (0) tally 53, deny 6 less /var/ ...

  10. JavaScript中对象与函数的某些事[JavaScript语言精粹-N1]

    今天在读<JavaScript语言精粹>的时候,关于函数的一个部分,始终觉得有点难以理解,代码如下: 1: var obj = (function(){ 2: var value = 0; ...