奇怪吸引子---Dadras
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors
这里使用自己定义语法的脚本代码生成混沌图像.相关软件参见:YChaos生成混沌图像.如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815
脚本代码:
[ScriptLines]
u=j - a*i + b*j*k
v=c*j - i*k + k
w=d*i*j - e*k
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=3.000000
b=2.700000
c=1.700000
d=2.000000
e=9.000000
i=1.000000
j=1.000000
k=1.000000
t=0.001000
混沌图像:
奇怪吸引子---Dadras的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- NOSQL快速入门
NoSql是一个很老的概念了,但对自己来说,仍然是一个短板,果断补上. 首先通过几个简单的例子来了解NOSQL在国内的情况(2013年左右的数据,有些过时),比如新浪微博,其就有200多台物理机运行着 ...
- MySQL DROP DB或TABLE场景下借助SQL Thread快速应用binlog恢复方案
[问题] 假设有这种场景,误操作DROP DB或TABLE,常规的恢复操作是还原全备份,并用mysqlbinlog追加到drop操作前的位置. 如果需要恢复的binlog的日志量比较大而我们只希望恢复 ...
- C# Activex调用USB摄像头--附带源码
前言 最近在整理一些自己写过的东西,也算是重新熟悉一下并且优化一下吧. 需求:获取本地USB摄像头视频显示,并且获取图片数据给底层做人脸识别. 记得当时直接采用H5已经做好了,调试好了....结果放上 ...
- html (第四本书第七章浮动参考)
课上1 <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8 ...
- Java异常类层次结构图
1. 分类图镇楼: 2.运行时异常与非运行时异常区别: Java 提供了两类主要的异常 :runtime exception 和 checked exception. 2.1 checked exce ...
- Python学习——Python 容器(列表,元组,字典,集合)
列表: 列表非常适合利用顺序和位置定位某一元素,尤其是当元素的顺序或内容经常发生改变时.与字符串不同,列表是可变的. 你可以直接对原始列表进行修改:添加新元素.删除或覆盖已有元素.在列表中,具有相同值 ...
- 懒人的福利?教你用set维护斜率优化凸包
斜率优化题目大家肯定都做得不少了,有一些题目查询插入点的x坐标和查询斜率都不单调,这样就需要维护动态凸包并二分斜率.(例如bzoj1492) 常规的做法是cdq分治或手写平衡树维护凸包,然而如果我不愿 ...
- Android任务和返回栈完全解析(转)
转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/41087993 本篇文章主要内容来自于Android Doc,我翻译之后又做了些加工 ...
- 最新的裸机联想笔记本装win7系统/SSD(固态硬盘)上安装win7系统/联想K4450A i7装win7系统
老师让我帮他装个操作系统,由于是新电脑,并且老师的电脑上另安有固态硬盘,老师要我把系统安装在固态硬盘上,BIOS是2014年7月份的,所以BIOS设置项可能会有所变化. 下面是遇到的一些问题,及解决方 ...
- BZOJ4175 : 小G的电话本
用后缀树统计出出现了x次的本质不同的子串的个数,最后再乘以x,得到一个多项式. 这个多项式常数项为0,但是一次项不为0. 于是把整个多项式除以一次项,通过多项式求ln和多项式求exp求出它的幂. 最后 ...