奇怪吸引子---Dadras
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors
这里使用自己定义语法的脚本代码生成混沌图像.相关软件参见:YChaos生成混沌图像.如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815
脚本代码:
[ScriptLines]
u=j - a*i + b*j*k
v=c*j - i*k + k
w=d*i*j - e*k
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=3.000000
b=2.700000
c=1.700000
d=2.000000
e=9.000000
i=1.000000
j=1.000000
k=1.000000
t=0.001000
混沌图像:
奇怪吸引子---Dadras的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- C#并行编程(6):线程同步面面观
理解线程同步 线程的数据访问 在并行(多线程)环境中,不可避免地会存在多个线程同时访问某个数据的情况.多个线程对共享数据的访问有下面3种情形: 多个线程同时读取数据: 单个线程更新数据,此时其他线程读 ...
- 运行程序,解读this指向---case4
var param = 'window'; var obj1 = { param: 'obj1', fn1: function () { console.log(this.param); }, fn2 ...
- Linux驱动之串口(UART)
<uart驱动程序概述> 在嵌入式Linux系统中,串口被看成终端设备,终端设备(tty)的驱动程序分为3部分: tty_core tty_disicipline tty_driver ...
- hihoCoder.1457.后缀自动机四 重复旋律7(广义后缀自动机)
题目链接 假设我们知道一个节点表示的子串的和sum,表示的串的个数cnt,那么它会给向数字x转移的节点p贡献 \(sum\times 10+c\times cnt\) 的和. 建广义SAM,按拓扑序正 ...
- 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem I. Interest Targeting 模拟题
Problem I. Interest Targeting 题目连接: http://codeforces.com/gym/100714 Description A unique display ad ...
- C++ Curiously Recurring Template Prattern(CRTP)例程
简单介绍和例子请参考:C++ 惯用法 CRTP 简介 下面例子为兼顾CRTP和多态的例子. #include <iostream> #include <vector> usin ...
- 【精选】Jupyter Notebooks里的TensorFlow图可视化
[精选]Jupyter Notebooks里的TensorFlow图可视化 https://mp.weixin.qq.com/s?src=11×tamp=1503060682&a ...
- LPC-LINK 2 Board IO TABLE
- 0xWS2812 STM32 driver for WS2812(B) RGB LEDs
0xWS2812 STM32 driver for WS2812(B) RGB LEDs 0xWS2812 pronounced "hex-WS2812" This code ai ...
- Android ListView中按钮监听器设置的解决方案
在做安卓应用开发的时候很经常会用到ListView,并且每一个Item里面都会有按钮之类的需要进行事件监听的控件.在给按钮添加OnClickListener的时候,一开始很下意识的会想在ListVie ...