Mathematics | Mean, Variance and Standard Deviation
Mean is average of a given set of data. Let us consider below example
These eight data points have the mean (average) of 5:
Variance is sum of squares of differences between all numbers and means.
Deviation for above example. First, calculate the deviations of each data point from the mean, and square the result of each:
variance = = 4.
Standard Deviation is square root of variance. It is a measure of the extent to which data varies from the mean.
Standard Deviation (for above data) = = 2
Why did mathematicians chose square and then square root to find deviation, why not simply take difference of values?
One reason is the sum of differences becomes 0 according to definition of mean. Sum of absolute differences could be an option, but with absolute differences it was difficult to prove many nice theorems. [Source: MIT Video Lecture at 1:19]
Some Interesting Facts:
1) Value of standard deviation is 0 if all entries in input are same.
2) If we add (or subtract) a number say 7 to all values in input set, mean is increased (or decreased) by 7, but standard deviation doesn’t change.
3) If we multiply all values in input set by a number 7, both mean and standard deviation are multiplied by 7. But if we multiply all input values with a negative number say -7, mean is multiplied by -7, but standard deviation is multiplied by 7.
Below questions have been asked in previous year GATE exams
http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-64/
Mathematics | Mean, Variance and Standard Deviation的更多相关文章
- 方差(variance)、标准差(Standard Deviation)、均方差、均方根值(RMS)、均方误差(MSE)、均方根误差(RMSE)
方差(variance).标准差(Standard Deviation).均方差.均方根值(RMS).均方误差(MSE).均方根误差(RMSE) 2017年10月08日 11:18:54 cqfdcw ...
- range|Sample Standard Deviation|标准差几何意义
Measures of Variation 方差:measures of variation or measures of spread 源于range发现range不足以评估整个set(因为只用到l ...
- 标准差(standard deviation)和标准误差(standard error)你能解释清楚吗?
by:ysuncn(欢迎转载,请注明原创信息) 什么是标准差(standard deviation)呢?依据国际标准化组织(ISO)的定义:标准差σ是方差σ2的正平方根:而方差是随机变量期望的二次偏差 ...
- 标准差(standard deviation)和标准错误(standard error)你能解释一下?
by:ysuncn(欢迎转载,转载请注明原始消息) 什么是标准差(standard deviation)呢?依据国际标准化组织(ISO)的定义:标准差σ是方差σ2的正平方根.而方差是随机变量期望的二次 ...
- How to Find the Standard Deviation in Minitab
Standard deviation, represented by the Greek Letter sigma σ, is a measure of dispersement in statist ...
- 均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation)
均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation) 1.均方根值(RMS)也称作为效值,它的计算方法是先平方.再平均.然后开方. 2.均方根误差,它是观测值 ...
- 均方根误差(RMSE),平均绝对误差 (MAE),标准差 (Standard Deviation)
来源:https://blog.csdn.net/capecape/article/details/78623897 RMSE Root Mean Square Error, 均方根误差是观测值与真值 ...
- 标准差(Standard Deviation) 和 标准误差(Standard Error)
本文摘自 Streiner DL.Maintaining standards: differences between the standard deviation and standarderror ...
- Mean, Median, Mode, Range, and Standard Deviation
Descriptive statistics tell you about the distribution of data points in data set. The most common m ...
随机推荐
- HDU-2612.Find way .(不同起点不同终点的BFS)
我要被这个好用的memset气死了...... 真香 #include <cstring> #include <string> int main () { ]; memset( ...
- Asp.net中GridView使用详解(很全,很经典 转来的)
Asp.net中GridView使用详解 效果图参考:http://hi.baidu.com/hello%5Fworld%5Fws/album/asp%2Enet中以gv开头的图片 l ...
- c中堆栈的理解
一直对堆栈的使用以及全局变量.静态全局变量.局部变量.静态局部变量.初始化的全局变量.未初始化的全局变量.初始化的局部变量.未初始化的局部变量理解的不是很清楚,今天抽个时间来总结以下这方面的知识: 1 ...
- win静态库动态库
静态链接库: #include "..\lib.h" #pragma comment(lib,"..\\debug\\libTest.lib") //指定与静态 ...
- 项目总结07:JS图片的上传预览和表单提交(FileReader()方法)
JS图片的上传预览和表单提交(FileReader()方法) 一开始没有搞明白下面这块代码的,今天有时间简单整理下 核心点:FileReader()方法 以下是代码(以JSP文件为例) <!DO ...
- awk参数解析
# awk --help Usage: awk [POSIX or GNU style options] -f progfile [--] file ... Usage: awk [POSIX or ...
- Java通过遍历sessionId获取服务器所有会话session
Servlet2.1之后不支持SessionContext里面getSession(String id)方法,也不存在遍历所有会话Session的方法.但是,我们可以通过HttpSessionList ...
- selenium无界面chromedriver
chromeDriver下载地址:http://chromedriver.storage.googleapis.com/index.html 谷歌浏览器Chrome和驱动程序的对照表https://b ...
- spring+mybatis+mina+logback框架搭建
第一次接触spring,之前从来没有学过spring,所以算是赶鸭子上架,花了差不多一个星期来搭建,中间遇到各种各样的问题,一度觉得这个框架搭建非常麻烦,没有一点技术含量,纯粹就是配置,很低级!但随着 ...
- HISAT,sTRINGTIE,ballgown三款RNA-seq信息分析软件
HISAT,sTRINGTIE,ballgown三款RNA-seq信息分析软件 2015年04月02日 11:35:47 夜丘 阅读数:8940 标签: 生物 更多 个人分类: 论文笔记 Bowt ...