2019.01.22 uoj#14. 【UER #1】DZY Loves Graph(并查集)
传送门
题意简述:
要求支持以下操作:
在a与b之间连一条长度为i的边(i是操作编号);删除当前图中边权最大的k条边;表示撤销第 i−1次操作,保证第1次,第i−1 次不是撤回操作。
要求在每次操作后输出当前图的最小生成树边权和。
思路:由于边权为当前操作编号因此相当于边是单调加入的,也就是说我们可以直接上kruskalkruskalkruskal的合并方法。
关键在于怎么维护这几个操作。
加边操作:加入一条边。
删除操作:删掉最近加入的kkk条边。
撤回加边操作:删掉最近加入的一条边
撤回删除操作:等于没有变化。
那么我们用栈存下每一个状态的值转移给后面的状态即可。
注意并查集要简单可持久化一下,可以用按秩合并。
实测了一波按sizesizesize合并比按深度合并快。
按sizesizesize合并代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
typedef long long ll;
const int N=5e5+5;
int n,m,fa[N],siz[N],cnt[N],stk[N],top=0;
ll ans[N];
inline int find(int x){return x==fa[x]?x:find(fa[x]);}
inline void print(int x){cout<<(cnt[x]==n-1?ans[x]:0)<<'\n';}
inline void add(int x,int y,int w){
int fx=find(x),fy=find(y);
++top,cnt[top]=cnt[top-1],ans[top]=ans[top-1];
if(fx==fy)stk[top]=0;
else{
if(siz[fx]<siz[fy])swap(fx,fy);
stk[top]=fy,fa[fy]=fx,siz[fx]+=siz[fy],++cnt[top],ans[top]+=w;
}
}
inline void delet(int tim){
while(tim--){
int p=stk[top--];
siz[fa[p]]-=siz[p],fa[p]=p;
}
}
int main(){
n=read(),m=read();
for(ri i=1;i<=n;++i)fa[i]=i,siz[i]=1;
for(ri last=0,k,i=1;i<=m;++i){
char s[6];
scanf("%s",s);
if(s[0]=='A'){
if(last==2)delet(k);
int a=read(),b=read();
add(a,b,i),print(top),last=1;
}
else if(s[0]=='D'){
if(last==2)delet(k);
int a=read();
print(top-a),last=2,k=a;
}
else{
if(last==1)delet(1);
print(top),last=0;
}
}
return 0;
}
按深度合并代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
typedef long long ll;
const int N=3e5+5,M=5e5+5;
int n,m,fa[N],rk[N],cnt[M],stk[M],top=0;
ll ans[M];
inline int find(int x){return x==fa[x]?x:find(fa[x]);}
inline void print(int x){cout<<(cnt[x]==n-1?ans[x]:0)<<'\n';}
inline void add(int x,int y,int w){
int fx=find(x),fy=find(y);
++top,cnt[top]=cnt[top-1],ans[top]=ans[top-1];
if(fx==fy)stk[top]=0;
else{
if(rk[fx]<rk[fy])swap(fx,fy);
stk[top]=fy,fa[fy]=fx,rk[fx]+=rk[fx]==rk[fy],++cnt[top],ans[top]+=w;
}
}
inline void delet(int tim){
while(tim--){
int p=stk[top--];
rk[fa[p]]-=rk[fa[p]]==rk[p]+1,fa[p]=p;
}
}
int main(){
n=read(),m=read();
for(ri i=1;i<=n;++i)fa[i]=i,rk[i]=1;
for(ri last=0,k,i=1;i<=m;++i){
char s[6];
scanf("%s",s);
if(s[0]=='A'){
if(last==2)delet(k);
int a=read(),b=read();
add(a,b,i),print(top),last=1;
}
else if(s[0]=='D'){
if(last==2)delet(k);
int a=read();
print(top-a),last=2,k=a;
}
else{
if(last==1)delet(1);
print(top),last=0;
}
}
return 0;
}
2019.01.22 uoj#14. 【UER #1】DZY Loves Graph(并查集)的更多相关文章
- UOJ14 DZY Loves Graph 并查集
传送门 题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号).删除前$K$大边.撤销前一次操作,每一次操作后询问最小生成树边权和.$N \leq 3 \tim ...
- UOJ_14_【UER #1】DZY Loves Graph_并查集
UOJ_14_[UER #1]DZY Loves Graph_并查集 题面:http://uoj.ac/problem/14 考虑只有前两个操作怎么做. 每次删除一定是从后往前删,并且被删的边如果不是 ...
- [UER #1] DZY Loves Graph
题目描述 开始有 \(n\) 个点,现在对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 \(1\) 开始编号)有可能的三种情况: \(Add\) a b: 表示在 \ ...
- UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)
显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...
- cf444E. DZY Loves Planting(并查集)
题意 题目链接 Sol 神仙题啊Orzzzzzz 考场上的时候直接把树扔了对着式子想,想1h都没得到啥有用的结论. 然后cf正解居然是网络流??出给NOIP模拟赛T1???¥%--&((--% ...
- 【UER #1】[UOJ#12]猜数 [UOJ#13]跳蚤OS [UOJ#14]DZY Loves Graph
[UOJ#12][UER #1]猜数 试题描述 这一天,小Y.小D.小C正在愉快地玩耍. 小Y是个数学家,他一拍脑袋冒出了一个神奇的完全平方数 n. 小D是个机灵鬼,很快从小Y嘴里套出了 n的值.然后 ...
- 学长小清新题表之UOJ 14.DZY Loves Graph
学长小清新题表之UOJ 14.DZY Loves Graph 题目描述 \(DZY\)开始有 \(n\) 个点,现在他对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 ...
- 【UOJ #14】【UER #1】DZY Loves Graph
http://uoj.ac/problem/14 题解很好的~ 不带路径压缩的并查集能保留树的原本形态. 按秩合并并查集可以不用路径压缩,但是因为此题要删除,如果把深度当为秩的话不好更新秩的值,所以把 ...
- uoj #14.【UER #1】DZY Loves Graph
http://uoj.ac/problem/14 由于加入的边权递增,可以直接运行kruskal并支持撤销,但这样如果反复批量删边和撤销,时间复杂度会退化,因此需要对删边操作加上延时处理,只有在删边后 ...
随机推荐
- jquery 事件委托(利用冒泡)
将事件绑定在父元素上,格式$(父元素).on("事件名称","子元素选择器",function(方法体){}) <!DOCTYPE html> &l ...
- 【Android端】代码打包成jar包/aar形式
Android端代码打包成jar包和aar形式: 首先,jar包的形式和aar形式有什么区别? 1.打包之后生成的文件地址: *.jar:库/build/intermediates/bundles/d ...
- TZOJ 3315 买火车票(线段树区间最小值)
描述 Byteotian州铁道部决定赶上时代,为此他们引进了城市联网.假设城市联网顺次连接着n 个市从1 到n 编号(起始城市编号为1,终止城市编号为n).每辆火车有m个座位且在任何两个运送更多的乘客 ...
- python第三方库requests简单介绍
一.发送请求与传递参数 简单demo: import requests r = requests.get(url='http://www.itwhy.org') # 最基本的GET请求 print(r ...
- 【Linux 进程】fork父子进程间共享数据分析
之前我们通过fork()函数,得知了父子进程之间的存在着代码的拷贝,且父子进程都相互独立执行,那么父子进程是否共享同一段数据,即是否存在着数据共享.接下来我们就来分析分析父子进程是否存在着数据共享. ...
- Java遍历文件夹下的所以文件
利用Java递归遍历文件夹下的所以文件,然后对文件进行其他的操作.如:对文件进行重命名,对某一类文件进行重编码.可以对某一工程下的全部.java文件进行转码成utf-8等 代码如下,这里只对文件进行重 ...
- 通过docker-compose构建ghost博客(二)
上一篇通过yml文件构建 ghost博客,这次通过构建nginx服务,并添加反向代理来运行搭建的ghost博客. 目录结构 ghost.conf 就是 定义的nginx 加载的配置文件 server ...
- openshift上传java web项目
下载当前客户端 OC(Openshift Client) https://mirror.openshift.com/pub/openshift-v3/clients/3.9.14/windows/oc ...
- Jenkins与SVN持续集成
官网下载Jenkins&SVN&eclipse,版本号没要求,建议使用最新稳定版本 登录Jenkins:http://localhost:8080 登录SVN:http://local ...
- Django 模板语言 路由 视图
. 模板语言(字符串替换) . 母版和继承 . 什么时候用母版? html页面有重复的代码,把它们提取出来放到一个单独的html文件. (比如:导航条和左侧菜单) . 子页面如何使用母版? {% ex ...