题意

题目链接

分析

  • 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理。
  • 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合。更进一步地,我们考虑的人一定是连续的。
  • 假设我们考虑的区间的总人数为 \(x\) ,区间长度为 \(len\), 那么 \(x-(len+d)*k>0\) 于是 \(x-k*len>dk\) ,维护连续最大和即可。
  • 总时间复杂度为 \(O(nlogn)\)。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 2e5 + 7;
int n, m, d;
LL k;
struct data {
LL mx, l, r, s;
data operator +(const data &rhs) const {
data res;
res.mx = max(max(mx, rhs.mx), r + rhs.l);
res.s = s + rhs.s;
res.l = max(l, s + rhs.l);
res.r = max(rhs.r, rhs.s + r);
return res;
}
}t[N << 2];
#define Ls o << 1
#define Rs o << 1 | 1
void pushup(int o) {
t[o] = t[Ls] + t[Rs];
}
void build(int l, int r, int o) {
if(l == r) {
t[o].mx = t[o].s = -k;
return;
}int mid = l + r >> 1;
build(l, mid, Ls);
build(mid + 1, r, Rs);
pushup(o);
}
void modify(int p, int l, int r, int o, int v) {
if(l == r) {
t[o].mx += v, t[o].s += v;
t[o].l = t[o].r = t[o].s;
return;
}int mid = l + r >> 1;
if(p <= mid) modify(p, l, mid, Ls, v);
else modify(p, mid + 1, r, Rs, v);
pushup(o);
}
int main() {
n = gi(), m = gi(), k = gi(), d = gi();
build(1, n, 1);
while(m--) {
int r = gi(), x = gi();
modify(r, 1, n, 1, x);
puts(t[1].mx > 1ll * d * k ? "NIE": "TAK");
}
return 0;
}

[BZOJ1135][POI2009]Lyz[霍尔定理+线段树]的更多相关文章

  1. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

  2. [BZOJ3693]圆桌会议[霍尔定理+线段树]

    题意 题目链接 分析 又是一个二分图匹配的问题,考虑霍尔定理. 根据套路我们知道只需要检查 "区间的并是一段连续的区间" 这些子集. 首先将环倍长.考虑枚举答案的区间并的右端点 \ ...

  3. [BZOJ2138]stone[霍尔定理+线段树]

    题意 一共有 \(n\) 堆石子,每堆石子有一个数量 \(a\) ,你要进行 \(m\) 次操作,每次操作你可以在满足前 \(i-1\) 次操作的回答的基础上选择在 \([L_i,R_i]\) 区间中 ...

  4. 【AtCoder ARC076】F Exhausted? 霍尔定理+线段树

    题意 N个人抢M个椅子,M个椅子排成一排 ,第i个人只能坐[1,Li]∪[Ri,M],问最多能坐多少人 $i$人连边向可以坐的椅子构成二分图,题意即是求二分图最大完美匹配,由霍尔定理,答案为$max( ...

  5. BZOJ1135 LYZ(POI2009) Hall定理+线段树

    做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...

  6. [arc076F]Exhausted?[霍尔定理+线段树]

    题意 地上 \(1\) 到 \(m\) 个位置摆上椅子,有 \(n\) 个人要就座,每个人都有座位癖好:选择 \(\le L\) 或者 \(\ge R\) 的位置.问至少需要在两边添加多少个椅子能让所 ...

  7. 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)

    题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...

  8. BZOJ1135:[POI2009]Lyz(线段树,Hall定理)

    Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...

  9. LOJ.6062.[2017山东一轮集训]Pair(Hall定理 线段树)

    题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i ...

随机推荐

  1. 如何在 Windows 10 中搭建 Node.js 环境?

    [编者按]本文作者为 Szabolcs Kurdi,主要通过生动的实例介绍如何在 Windows 10 中搭建 Node.js 环境.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 在本文中 ...

  2. sklearn——数据集调用及应用

    忙了许久,总算是又想起这边还没写完呢. 那今天就写写sklearn库的一部分简单内容吧,包括数据集调用,聚类,轮廓系数等等.   自带数据集API 数据集函数 中文翻译 任务类型 数据规模 load_ ...

  3. LeetCode题解之 Binary Tree Preorder Traversal

    1.题目描述 2.问题分析 利用递归. 3.代码 vector<int> preorderTraversal(TreeNode* root) { vector<int> v; ...

  4. mysql processlist 线程状态

        Analyzing 线程是对MyISAM 表的统计信息做分析(例如, ANALYZE TABLE ).   checking permissions 线程是检查服务器是否具有所需的权限来执行该 ...

  5. python 多进程 Event的使用

    Event事件  多进程的使用 通俗点儿讲  就是 1.  Event().wait()    插入在进程中插入一个标记(flag)  默认为 false  然后flag为false时  程序会停止运 ...

  6. RecyclerView使用技巧(item动画及嵌套高度适配解决方案)

    原文地址 · Frank-Zhu  http://frank-zhu.github.io/android/2015/02/26/android-recyclerview-part-3/?utm_sou ...

  7. selenium-各种定位方法

    selenium各种定位方法. https://www.red-gate.com/simple-talk/wp-content/uploads/imported/1269-Locators_table ...

  8. chrome浏览器访问Google的插件“谷歌访问插件”以及常用插件

    1.解决新版谷歌浏览器无法从该网站添加应用.拓展程序和用户脚本 1.在Google Chrome浏览器的桌面快捷方式上鼠标右键,选择属性(R). 2. 在目标(T)后添加参数   --enable-e ...

  9. str操作方法

    s = 'dsj,fhk,je,f' # s1 = s.split(',') # print(s1) s = 'aleX leNb' s1 = s.strip() print(s1) s2 = s[2 ...

  10. 动态代理实现设置tomcat请求编码

    1)htmlcode: <html> <head> <title>$Title$</title> </head> <body> ...