[agc011C]Squared Graph-[二分图]
Description
Solution
我们以下考虑的情况都是原图中非孤立的点。
题目要求新图的连通块个数。这个不好算,我们考虑计算新图的联通块内的特征点(x,y),即无法通过移动找到(t,c)使得t<x,也无法找到点(x,a)满足a<y。(就是字典序最小吧)可知每个新图连通块内,都有且只会有1个特征点。这两者就等价。
对于新图的点(x,y),假如x,y所在原图连通块已确定,则第一纬度的x一定要是其所在原图联通块的最小编号点。第二维度y的话,如果y所在原图连通块是二分图,则y在被二分出来的两个点集中分别选择最小的点,都是满足要求的。(否则的话,第二维度y只能选其所在连通块内的最小编号点)
直接统计即可。(孤立点的计数。。em这个就比较好推,我就不赘述啦)
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int M=2e5+,N=1e5+;
int n,m,x,y;
struct pas{int y,nxt;
}g[M<<];int h[N],tot;
bool vis[N];int f[N];
int t1,t2,t3;
void cover(int x)
{
vis[x]=;
for (int i=h[x];i;i=g[i].nxt) if (!vis[g[i].y]) cover(g[i].y);
}
bool dfs(int x)
{
vis[x]=;
bool ret=;
int i;
for (i=h[x];i;i=g[i].nxt)
if (!vis[g[i].y]){ f[g[i].y]=f[x]^;if (!dfs(g[i].y)) {ret=;break;}}
else if (f[g[i].y]==f[x]) {ret=;break;}
for (;i;i=g[i].nxt) cover(g[i].y);
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
g[++tot]=pas{y,h[x]};h[x]=tot;
g[++tot]=pas{x,h[y]};h[y]=tot;
}
for (int i=;i<=n;i++)
{
if (!h[i]) t1++;
else if (!vis[i]) if (dfs(i)) t2++;else t3++;
}
ll ans;
ans=1ll*t1*t1+2ll*t1*(n-t1)+2ll*t2*t2+2ll*t2*t3+1ll*t3*t3; printf("%lld",ans);
}
[agc011C]Squared Graph-[二分图]的更多相关文章
- AGC011-C Squared Graph
题意 给定一个\(n\)个点\(m\)条边的图,构建一个\(n^2\)个点的图,新图的每个点都可以看成一个二元组,新图上的点\((a,b)和(a′,b′)\)之间有边,当且仅当原图中\((a,a′), ...
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...
- POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割
思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- Codeforces.542E.Playing on Graph(二分图)
题目链接 \(Description\) 给出一个n个点m条边的无向图. 你每次需要选择两个没有边相连的点,将它们合并为一个新点,直到这张图变成了一条链. 最大化这条链的长度,或输出无解. n< ...
- 【AtCoder】AGC011 C - Squared Graph
题解 大意是给出一张图,然后建一张新图,新图的点标号是(a,b) 如果a和c有一条边,b和d有一条边,那么(a,b)和(c,d)之间有一条边 我们把这道题当成这道题来做,给出两张图,如果第一张图有边( ...
- Agc011_C Squared Graph
传送门 题目大意 给定$n$个点$m$条边的简单图(无重边无自环),将有序点对$\{a,b\}$作为新的点,新产生的$n^2$个点中对于两个点,$\{a,b\},\{x,y\}$,当且仅当原图中存在边 ...
- Educational Codeforces Round 56 (Rated for Div. 2) D. Beautiful Graph (二分图染色)
题意:有\(n\)个点,\(m\)条边的无向图,可以给每个点赋点权\({1,2,3}\),使得每个点连的奇偶不同,问有多少种方案,答案对\(998244353\)取模. 题解:要使得每个点所连的奇偶不 ...
随机推荐
- [Android] Spinners介绍及用法
本文地址:http://www.cnblogs.com/rossoneri/p/4366018.html Spinners介绍 Spinners提供了从一个集(set)中选择某个值(value)的一个 ...
- Python字符串和编码
在最早的时候只有127个字符被编码到计算机里,也就是大小写英文字母.数字和一些符号,这个编码被成为ASCII编码. 但是要处理中文显然一个字节是不够的,至少需要两个字节,而且还不能和ASCII编码冲突 ...
- PHP的数据加密解密
本文出至:新太潮流网络博客 /** * [对数据进行加密] * @E-mial wuliqiang_aa@163.com * @TIME 2017-04-07 * @WEB http://blog.i ...
- scott/tiger is locked 解决办法
在plsql developer中要是以scott/tiger登录时提示ora-28000 the account is locked. 解决办法: 新装完Oracle10g后,用scott/tige ...
- jmeter函数简介
1._char:把一组数字转化成Unicode字符. 2._counter:记录线程的迭代次数. 3._CSVRead:可以从文件中指定列的值. 4.${_CSVRead(D:\test.txt,0, ...
- shell脚本常用技巧
shell脚本常用技巧 1.获取随机字符串或数字 ~]#echo $RANDOM | md5sum | cut -c 1-6 ~]#openssl rand -base64 4 | cut -c 1- ...
- StringBuffer&StringBuilder类
0. 说明 1. 总体说明 当对字符串进行修改的时候,需要使用 StringBuffer 和 StringBuilder 类. 和 String 类不同的是,StringBuffer 和 String ...
- MySQL主从复制异步原理以及搭建
MySQL主从复制的原理: 1.首先,MySQL主库在事务提交时会把数据变更作为时间events记录在二进制日志文件binlog中:MySQL主库上的sync_binlog参数控制Binlog日志以什 ...
- Docker容器学习与分享10
Docker容器向外提供服务 用分享04中的Nginx服务来试一下. 不过这次我直接用Nginx镜像创建容器,先下载Nginx镜像. [root@promote ~]# docker search n ...
- Python pandas & numpy 笔记
记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...