[概率DP]相逢是温厚
题意
有\(n\)场比赛,他每次等概率地选择一场,选择的比赛可能有没ac过的题,他一定会ac这次比赛中的某一道,并说我好菜啊。如果全ac过了,也会说我好菜啊。求期望说多少次我好菜啊。
注意题目中每场题的范围是1到3
我们可以把相同题数的场看成同一种,那就有三种
把题意抽象成取球游戏,就是\(i_1\)类型的球有\(a_1\)个,\(i_2\)类型的球有\(a_2\)个,\(i_3\)类型的球有\(a_3\)个,即将数量一样的比赛抽象成同一种球,问期望用多少次可以取到所有不同的球。不同种类的球取出会带来不同的变化,取了\(i_1\)类型的球会导致剩余没取的个数减一,但取了\(i_3\)类型的球因为这个比赛的题目数减一变成\(i_2\)类型,取了\(i_2\)类型的球就变成\(i_1\)类型的。
这个问题挺难的,那我们就先看一下最基本的取球游戏(彩票收集问题)
前序知识
最基本的取球问题就是\(n\)个球,求将每个球至少取一次,问期望用多少次可以取到所有不同的球。
假设现在还剩下\(i\)个球没取过,那么这时取到没取过的球的概率是
\(P=i / N\)
由于这个事件满足几何分布,所以他的期望就是\(1/p\),就是\(N/i\)
几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。
用\(dp[i]\)表示剩下\(i\)个球没取时多少次取到剩下所有不同的球的期望
那么可以得出一下递推式:
\]
由期望的可加性:
\]
本题题解
这题就是取球游戏改编的,但是状态比较多,变成了3维的
根据上面的递推式和本题题意,得出以下状态转移方程,令\(dp[i][j][k]\)为剩下三种球没取时多少次取到所有不同的球的期望。再令\(M=i+j+k\)
\]
因为当前的状态有三种可能状态转移,并且每场比赛的选择都是等概率的,将后继状态已经求出的期望加上当前状态取出不同的球的期望。
\]
化简一下就是(好像没怎么化简)
\]
代码
可以将\(k\)优化一下,枚举所有的状态,然后暴力转移
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn = 505;
const int mod=17680321;
ll inv[maxn];
ll num[4];
ll dp[maxn][maxn][2];
void init(int n){
inv[1]=1;
for(int i=2;i<=n;++i){
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int n;
cin>>n;
init(n);
for(int i=1,a;i<=n;++i) {
cin>>a;
num[a]++;
}
dp[0][0][0]=0;
int t=1;
for (int k = 0; k <= num[3]; k++) {
t ^= 1;
for (int j = 0; j +k<= n; j++){
for (int i = 0; i +k+j<= n; i++){
if (i || j || k) {
dp[i][j][t] = 1ll * n * inv[i + j + k] % mod;
if (i)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i - 1][j][t] * i % mod * inv[i + j + k]) % mod;
if (j)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i + 1][j - 1][t] * j % mod * inv[i + j + k]) % mod;
if (k)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i][j + 1][t ^ 1] * k % mod * inv[i + j + k]) % mod;
}
}
}
}
cout<<dp[num[1]][num[2]][t]<<endl;
return 0 ;
}
总结
与常规的求解不同,数学期望经常逆向推出。
常言道:"正向推概率,反向推期望"
为什么呢?
大家可以百度一下(逃
[概率DP]相逢是温厚的更多相关文章
- Codeforces 28C [概率DP]
/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2151 Check the difficulty of problems (概率DP)
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...
- 概率DP light oj 1030
t组数据 n块黄金 到这里就捡起来 出发点1 到n结束 点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6 如果满6个的话 否则 ...
- hdu 4050 2011北京赛区网络赛K 概率dp ***
题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...
- [转]概率DP总结 by kuangbin
概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...
- SGU 422 Fast Typing(概率DP)
题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...
- HDU 4050 wolf5x(动态规划-概率DP)
wolf5x Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
随机推荐
- 腾讯电话面试总结(IEG后台开发)
1 Java面向对象:设计window画板的类框架.假设现在只有 直线.矩形.椭圆,怎么设计 2 Linux shell命令 定时怎么做 3 平时有问题经常访问那些网站 4 假设你现在是web网站 ...
- 学术Essay写作关键:避免冗余
“冗余”(Redundant)意味着多余的.不必要的.在Essay写作中,redundant expression(即冗余表达)指的是在一个短语或一句句子中有一个单词完全重复了同一短语或句子中的另一个 ...
- Linux基础(1) 安装
Linux基础 一.创建CentOS 7 Linux虚拟机 1.安装虚拟机 桥接网络:相当于这台机器就是物理机,多个电脑在连接在一个交换机上,同一个子网 NAT:这台机器只能通过物理机(相当于 ...
- IDEA创建新文件时自动生成时间和作者
打开设置,打开下图的选项并且输入 /** * @author 你的名字 * @date ${DATE} ${TIME} */
- org.springframework.test.context.junit4.SpringJUnit4ClassRunner
项目中有了spring-test的依赖,里面确实也有 org.springframework.test.context.junit4.SpringJUnit4ClassRunner 此类,但是项目就是 ...
- (day 1)创建项目--3【创建应用】
创建步骤 1.打开命令行,进入项目中manage.py的同级目录 2.在命令行输入 python manage.py startapp blog 3.添加应用名到settings.py的INSTALL ...
- HDU_2256 矩阵快速幂 需推算
最近开始由线段树转移新的内容,线段树学到扫描线这里有点迷迷糊糊的,有时候放一放可能会好一些. 最近突然对各种数学问题很感兴趣.好好钻研了一下矩阵快速幂.发现矩阵真是个计算神器,累乘类的运算原本要O(N ...
- linux下创建swap分区
两种不同的方式创建swap分区 第一种方法: fdisk /dev/sda n (新建一个分区为/dev/sda6) t (修改分区的id) 82 (swap的id为82) w (重写分区表) par ...
- mysql快速搭建从库
基于mysqldump快速搭建从库 https://blog.csdn.net/leshami/article/details/44994329 使用xtrbackup克隆从库 https://blo ...
- 吴裕雄--天生自然 JAVASCRIPT开发学习:HTML DOM 节点列表
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...