[概率DP]相逢是温厚
题意
有\(n\)场比赛,他每次等概率地选择一场,选择的比赛可能有没ac过的题,他一定会ac这次比赛中的某一道,并说我好菜啊。如果全ac过了,也会说我好菜啊。求期望说多少次我好菜啊。
注意题目中每场题的范围是1到3
我们可以把相同题数的场看成同一种,那就有三种
把题意抽象成取球游戏,就是\(i_1\)类型的球有\(a_1\)个,\(i_2\)类型的球有\(a_2\)个,\(i_3\)类型的球有\(a_3\)个,即将数量一样的比赛抽象成同一种球,问期望用多少次可以取到所有不同的球。不同种类的球取出会带来不同的变化,取了\(i_1\)类型的球会导致剩余没取的个数减一,但取了\(i_3\)类型的球因为这个比赛的题目数减一变成\(i_2\)类型,取了\(i_2\)类型的球就变成\(i_1\)类型的。
这个问题挺难的,那我们就先看一下最基本的取球游戏(彩票收集问题)
前序知识
最基本的取球问题就是\(n\)个球,求将每个球至少取一次,问期望用多少次可以取到所有不同的球。
假设现在还剩下\(i\)个球没取过,那么这时取到没取过的球的概率是
\(P=i / N\)
由于这个事件满足几何分布,所以他的期望就是\(1/p\),就是\(N/i\)
几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。
用\(dp[i]\)表示剩下\(i\)个球没取时多少次取到剩下所有不同的球的期望
那么可以得出一下递推式:
\]
由期望的可加性:
\]
本题题解
这题就是取球游戏改编的,但是状态比较多,变成了3维的
根据上面的递推式和本题题意,得出以下状态转移方程,令\(dp[i][j][k]\)为剩下三种球没取时多少次取到所有不同的球的期望。再令\(M=i+j+k\)
\]
因为当前的状态有三种可能状态转移,并且每场比赛的选择都是等概率的,将后继状态已经求出的期望加上当前状态取出不同的球的期望。
\]
化简一下就是(好像没怎么化简)
\]
代码
可以将\(k\)优化一下,枚举所有的状态,然后暴力转移
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn = 505;
const int mod=17680321;
ll inv[maxn];
ll num[4];
ll dp[maxn][maxn][2];
void init(int n){
inv[1]=1;
for(int i=2;i<=n;++i){
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int n;
cin>>n;
init(n);
for(int i=1,a;i<=n;++i) {
cin>>a;
num[a]++;
}
dp[0][0][0]=0;
int t=1;
for (int k = 0; k <= num[3]; k++) {
t ^= 1;
for (int j = 0; j +k<= n; j++){
for (int i = 0; i +k+j<= n; i++){
if (i || j || k) {
dp[i][j][t] = 1ll * n * inv[i + j + k] % mod;
if (i)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i - 1][j][t] * i % mod * inv[i + j + k]) % mod;
if (j)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i + 1][j - 1][t] * j % mod * inv[i + j + k]) % mod;
if (k)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i][j + 1][t ^ 1] * k % mod * inv[i + j + k]) % mod;
}
}
}
}
cout<<dp[num[1]][num[2]][t]<<endl;
return 0 ;
}
总结
与常规的求解不同,数学期望经常逆向推出。
常言道:"正向推概率,反向推期望"
为什么呢?
大家可以百度一下(逃
[概率DP]相逢是温厚的更多相关文章
- Codeforces 28C [概率DP]
/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2151 Check the difficulty of problems (概率DP)
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...
- 概率DP light oj 1030
t组数据 n块黄金 到这里就捡起来 出发点1 到n结束 点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6 如果满6个的话 否则 ...
- hdu 4050 2011北京赛区网络赛K 概率dp ***
题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...
- [转]概率DP总结 by kuangbin
概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...
- SGU 422 Fast Typing(概率DP)
题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...
- HDU 4050 wolf5x(动态规划-概率DP)
wolf5x Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
随机推荐
- 【数据结构】二叉树的遍历(前、中、后序及层次遍历)及leetcode107题python实现
文章目录 二叉树及遍历 二叉树概念 二叉树的遍历及python实现 二叉树的遍历 python实现 leetcode107题python实现 题目描述 python实现 二叉树及遍历 二叉树概念 二叉 ...
- Failed to connect to raw.githubusercontent.com port 443: Connection refused
问题:macOS安装Homebrew时总是报错(Failed to connect to raw.githubusercontent.com port 443: Connection refused) ...
- AttributeError: 'list' object has no attribute 'data'智障错误
import urllib.requestimport urllib.parse url = ['http://fanyi.youdao.com/translate?smartresult=dict& ...
- Android自定义View——刮刮卡效果
想要红包的实现效果的可以关注我的博客,仿饿了么红包 下层图片:我们的红包的图片 上层图片:有两部分 一部分是灰色背景 一部分是拥有透明度为0,并且模式为交集的画笔 使用滑动监听,滑动时,用透明度为0的 ...
- php和js的小区别
1.今天看了下php的api感觉还可以,不是很难,可能没看到深入的地方, (1)和js很相似 目前感觉它和js的最大区别 js的 点 被替换成 -> function setCate($pa ...
- mysql第四篇--SQL逻辑查询语句执行顺序
mysql第四篇--SQL逻辑查询语句执行顺序 一.SQL语句定义顺序 SELECT DISTINCT <select_list> FROM <left_table> < ...
- GTK入门
环境准备 官网下载 GTK 源码包,因为本机 GLib 版本不够,下载一个非最新版的 GTK3.8.0 先学习用 直接阅读 "/gtk+-3.8.0/docs/reference/gtk/h ...
- 7.CSRF攻击和文件上传漏洞攻击
一.CSRF攻击及防范措施 1.概念 请求来源于其他网站,请求并不是用户的意愿,而是伪造的请求,诱导用户发起的请求 2.场景 攻击者盗用了你的身份,以你的名义发送恶意请求.CSRF能够做的事情包括:以 ...
- [tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...
- 谈IO中的阻塞和非阻塞,同步和异步及三种IO模型
什么是同步和异步? 烧水,我们都是通过热水壶来烧水的.在很久之前,科技还没有这么发达的时候,如果我们要烧水,需要把水壶放到火炉上,我们通过观察水壶内的水的沸腾程度来判断水有没有烧开.随着科技的发展,现 ...