国内的新冠肺炎疫情从发现至今已经持续3个多月了,这场起源于吃野味的灾难给大家的生活造成了诸多方面的影响。

有的同学是收入上的,有的同学是感情上的,有的同学是心理上的,还有的同学是体重上的。

那么国内的新冠肺炎疫情何时结束呢?什么时候我们才可以重获自由呢?

本篇文章将利用TensorFlow2.0建立时间序列RNN模型,对国内的新冠肺炎疫情结束时间进行预测。

一,准备数据

本文的数据集取自tushare,获取该数据集的方法参考了以下文章。

https://zhuanlan.zhihu.com/p/109556102

首先看下数据是什么样子的:

有时间、确诊人数、治愈人数、死亡人数这些列。

然后是创建数据集:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import models,layers,losses,metrics,callbacks %matplotlib inline
%config InlineBackend.figure_format = 'svg' df = pd.read_csv("./data/covid-19.csv",sep = "\t")
df.plot(x = "date",y = ["confirmed_num","cured_num","dead_num"],figsize=(10,6))
plt.xticks(rotation=60) dfdata = df.set_index("date")
dfdiff = dfdata.diff(periods=1).dropna()
dfdiff = dfdiff.reset_index("date") dfdiff.plot(x = "date",y = ["confirmed_num","cured_num","dead_num"],figsize=(10,6))
plt.xticks(rotation=60)
dfdiff = dfdiff.drop("date",axis = 1).astype("float32") # 用某日前8天窗口数据作为输入预测该日数据
WINDOW_SIZE = 8 def batch_dataset(dataset):
dataset_batched = dataset.batch(WINDOW_SIZE,drop_remainder=True)
return dataset_batched ds_data = tf.data.Dataset.from_tensor_slices(tf.constant(dfdiff.values,dtype = tf.float32)) \
.window(WINDOW_SIZE,shift=1).flat_map(batch_dataset) ds_label = tf.data.Dataset.from_tensor_slices(
tf.constant(dfdiff.values[WINDOW_SIZE:],dtype = tf.float32)) # 数据较小,可以将全部训练数据放入到一个batch中,提升性能
ds_train = tf.data.Dataset.zip((ds_data,ds_label)).batch(38).cache()

二,定义模型

使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。

此处选择使用函数式API构建任意结构模型。

# 考虑到新增确诊,新增治愈,新增死亡人数数据不可能小于0,设计如下结构
class Block(layers.Layer):
def __init__(self, **kwargs):
super(Block, self).__init__(**kwargs) def call(self, x_input,x):
x_out = tf.maximum((1+x)*x_input[:,-1,:],0.0)
return x_out def get_config(self):
config = super(Block, self).get_config()
return config tf.keras.backend.clear_session()
x_input = layers.Input(shape = (None,3),dtype = tf.float32)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x_input)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x)
x = layers.LSTM(3,input_shape=(None,3))(x)
x = layers.Dense(3)(x) # 考虑到新增确诊,新增治愈,新增死亡人数数据不可能小于0,设计如下结构
# x = tf.maximum((1+x)*x_input[:,-1,:],0.0)
x = Block()(x_input,x)
model = models.Model(inputs = [x_input],outputs = [x])
model.summary()

三,训练模型

训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。

注:循环神经网络调试较为困难,需要设置多个不同的学习率多次尝试,以取得较好的效果。

# 自定义损失函数,考虑平方差和预测目标的比值
class MSPE(losses.Loss):
def call(self,y_true,y_pred):
err_percent = (y_true - y_pred)**2/(tf.maximum(y_true**2,1e-7))
mean_err_percent = tf.reduce_mean(err_percent)
return mean_err_percent def get_config(self):
config = super(MSPE, self).get_config()
return config import datetime optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
model.compile(optimizer=optimizer,loss=MSPE(name = "MSPE")) logdir = "./data/keras_model/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") tb_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
# 如果loss在100个epoch后没有提升,学习率减半。
lr_callback = tf.keras.callbacks.ReduceLROnPlateau(monitor="loss",factor = 0.5, patience = 100)
# 当loss在200个epoch后没有提升,则提前终止训练。
stop_callback = tf.keras.callbacks.EarlyStopping(monitor = "loss", patience= 200)
callbacks_list = [tb_callback,lr_callback,stop_callback] history = model.fit(ds_train,epochs=500,callbacks = callbacks_list)

部分结果:

......
Epoch 491/500
1/1 [==============================] - 0s 11ms/step - loss: 0.2643 - lr: 0.0050
Epoch 492/500
1/1 [==============================] - 0s 12ms/step - loss: 0.2625 - lr: 0.0050
Epoch 493/500
1/1 [==============================] - 0s 12ms/step - loss: 0.2628 - lr: 0.0050
Epoch 494/500
1/1 [==============================] - 0s 11ms/step - loss: 0.2633 - lr: 0.0050
Epoch 495/500
1/1 [==============================] - 0s 12ms/step - loss: 0.2619 - lr: 0.0050
Epoch 496/500
1/1 [==============================] - 0s 11ms/step - loss: 0.2627 - lr: 0.0050
Epoch 497/500
1/1 [==============================] - 0s 11ms/step - loss: 0.2622 - lr: 0.0050
Epoch 498/500
1/1 [==============================] - 0s 12ms/step - loss: 0.2618 - lr: 0.0050
Epoch 499/500
1/1 [==============================] - 0s 12ms/step - loss: 0.2624 - lr: 0.0050
Epoch 500/500
1/1 [==============================] - 0s 12ms/step - loss: 0.2616 - lr: 0.0050

四,评估模型

评估模型一般要设置验证集或者测试集,由于此例数据较少,我们仅仅可视化损失函数在训练集上的迭代情况。

%matplotlib inline
%config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt def plot_metric(history, metric):
train_metrics = history.history[metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.title('Training '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric])
plt.show() plot_metric(history,"loss")

五,使用模型

此处我们使用模型预测疫情结束时间,即 新增确诊病例为0 的时间。

# 使用dfresult记录现有数据以及此后预测的疫情数据
dfresult = dfdiff[["confirmed_num","cured_num","dead_num"]].copy()
dfresult.tail()

# 预测此后100天的新增走势,将其结果添加到dfresult中
for i in range(100):
arr_predict = model.predict(tf.constant(tf.expand_dims(dfresult.values[-38:,:],axis = 0))) dfpredict = pd.DataFrame(tf.cast(tf.floor(arr_predict),tf.float32).numpy(),
columns = dfresult.columns)
dfresult = dfresult.append(dfpredict,ignore_index=True)
dfresult.query("confirmed_num==0").head()

# 第55天开始新增确诊降为0,第45天对应3月10日,也就是10天后,即预计3月20日新增确诊降为0
# 注:该预测偏乐观
dfresult.query("cured_num==0").head()

# 第164天开始新增治愈降为0,第45天对应3月10日,也就是大概4个月后,即7月10日左右全部治愈。
# 注: 该预测偏悲观,并且存在问题,如果将每天新增治愈人数加起来,将超过累计确诊人数。
dfresult.query("dead_num==0").head()
# 第60天开始,新增死亡降为0,第45天对应3月10日,也就是大概15天后,即20200325
# 该预测较为合理

六,保存模型

推荐使用TensorFlow原生方式保存模型。

model.save('./data/tf_model_savedmodel', save_format="tf")
print('export saved model.')
model_loaded = tf.keras.models.load_model('./data/tf_model_savedmodel',compile=False)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
model_loaded.compile(optimizer=optimizer,loss=MSPE(name = "MSPE"))
model_loaded.predict(ds_train)

参考:

开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

【tensorflow2.0】处理时间序列数据的更多相关文章

  1. 【tensorflow2.0】处理图片数据-cifar2分类

    1.准备数据 cifar2数据集为cifar10数据集的子集,只包括前两种类别airplane和automobile. 训练集有airplane和automobile图片各5000张,测试集有airp ...

  2. geotrellis使用(二十三)动态加载时间序列数据

    目录 前言 实现方法 总结 一.前言        今天要介绍的绝对是华丽的干货.比如我们从互联网上下载到了一系列(每天或者月平均等)的MODIS数据,我们怎么能够对比同一区域不同时间的数据情况,采用 ...

  3. mysql 生成时间序列数据 - 存储过程

    由于时间自动转换为int值, 做一步转化,也可在调用时处理 use `test`; CREATE table test.test1 as SELECT state, id, `规格条码`, `色号条码 ...

  4. 基于tensorflow2.0 使用tf.keras实现Fashion MNIST

    本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflo ...

  5. 006使用Grafana展示时间序列数据

    简介 Grafana是一个独立运行的系统,内置了Web服务器.它可以基于仪表盘的方式来展示.分析时间序列数据. Grafana支持多种数据源,例如:Graphite.OpenTSDB.InfluxDB ...

  6. 时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)——三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息

    from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html 在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在 ...

  7. 大数据DDos检测——DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然! 和一个句子的分词算法CRF没有区别!

    DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然!——和一个句子的分词算法CRF没有区别!注:传统DDos检测直接基于IP数据发送流量来识别, ...

  8. Google工程师亲授 Tensorflow2.0-入门到进阶

    第1章 Tensorfow简介与环境搭建 本门课程的入门章节,简要介绍了tensorflow是什么,详细介绍了Tensorflow历史版本变迁以及tensorflow的架构和强大特性.并在Tensor ...

  9. TensorFlow2.0(1):基本数据结构—张量

    1 引言 TensorFlow2.0版本已经发布,虽然不是正式版,但预览版都发布了,正式版还会远吗?相比于1.X,2.0版的TensorFlow修改的不是一点半点,这些修改极大的弥补了1.X版本的反人 ...

随机推荐

  1. Spring Boot从入门到精通(七)集成Redis实现Session共享

    单点登录(SSO)是指在多个应用系统中,登录用户只需要登录验证一次就可以访问所有相互信任的应用系统,Redis Session共享是实现单点登录的一种方式.本文是通过Spring Boot框架集成Re ...

  2. spring boot actuator服务监控与管理

    1.引入actuator所需要的jar包 <dependency> <groupId>org.springframework.boot</groupId> < ...

  3. 优化一、js

    1.防抖和节流 2.深拷贝和浅拷贝

  4. 内网渗透之权限维持 - MSF与cs联动

    年初六 六六六 MSF和cs联动 msf连接cs 1.在队伍服务器上启动cs服务端 ./teamserver 团队服务器ip 连接密码 2.cs客户端连接攻击机 填团队服务器ip和密码,名字随便 ms ...

  5. AX中Json转化成表记录

    static void JsonToTable(str _json,Common _Common){    sysdictTable        dictTable;    TableId      ...

  6. Protocol buffers编写风格指南

    原文链接:https://developers.google.com/protocol-buffers/docs/style Style Guide 本文说明了.proto文件的编写风格指南.遵循这些 ...

  7. java面试汇总一

    第一部分 Java SE基础(1) 1.1 java的8种基本数据类型 装箱  拆箱 1.1.1  8种基本的数据类型 1.1.2装箱  拆箱 自动装箱是 Java 编译器在基本数据类型和对应的对象包 ...

  8. oracle使用expdp定时备份数据库

    目录 oracle使用expdp备份数据库 备份shell脚本 创建定时任务 oracle使用expdp备份数据库 备份shell脚本 #!/bin/sh #获取当前时间 BACKUPTIME=$(d ...

  9. Spark入门(六)--Spark的combineByKey、sortBykey

    spark的combineByKey combineByKey的特点 combineByKey的强大之处,在于提供了三个函数操作来操作一个函数.第一个函数,是对元数据处理,从而获得一个键值对.第二个函 ...

  10. Java 基础(四):数组

    数组,一种应用非常广泛的数据结构,简单地来说就是一组类型相同且无序的元素的存储在固定长度且有序的内存空间. 创建一个数组 在Java中,我们可以通过[]去声明一个指定类型的数组 int[] a; // ...