「NOIP2009」Hankson 的趣味题
Hankson 的趣味题
题目描述
输入格式
输出格式
样例
样例输入
2
41 1 96 288
95 1 37 1776
样例输出
6
2
数据范围与提示
题解
做题经历
以为是数论,果断放弃,看了看数据,发现可以暴搜得一半的分,然后...... $rank$ 出来之后,发现自己 $250pts$ ......
正解
首先对于题意进行分析,题意要求的是
满足使得 $gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$ 的 $x$ 有多少取值。
那么,我们将这些关系分析一下
首先可以肯定这个关系:$a_0\cdot k_1=x$
那么同理,这个关系也是肯定存在的:$x\cdot k_2=b_1$
那么将这两个等式综合一下,可得:$$a_0\cdot k_1k_2=x\cdot k_2=b_1$$
再浅显地理解一下,如果 $b_1%a_0 ≠ 0$ ,那么答案肯定是 $0$ 的。
我们先设 $x={p_1}^{k_1}{p_2}^{k_2}......{p_n}^{k_n}$
然后,根据 $a_0,a_1$ 与 $b_0,b_1$ 分析他们分别对于 $x$ 有什么限制。
首先,我们看第一组 $a_0,a_1$
我们先设
$a_0={b_1}^{t_1}{b_2}^{t_2}......{b_m}^{t_m}$
$a_1={c_1}^{q_1}{c_2}^{q_2}......{c_v}^{q_v}$
首先根据 $gcd$ 的定义,我们可以知道每一个 $q_i=min\{k_i,t_i\}$
那么我们来讨论一下:
- 当 $q_i=t_i$ 时,$k_i≥t_i$,说明这时 $x$ 中的因数 $p_i$ 最少有 $k_i$ 个,但是可以无限多
- 当 $q_i≠t_i$ 时,若 $q_i<t_i$ 则无解,否则必定满足 $k_i=t_i$
然后再分别计数即可。
而对于第二组,也可以用同样的方法进行分析,具体细节不作赘述。
丢个代码:
想看代码?还在码中......
「NOIP2009」Hankson 的趣味题的更多相关文章
- loj2589 「NOIP2009」Hankson 的趣味题
对于质因数分解理解还不到位. 此题可知$lcm$是$x$的倍数,$x$是$lcm$的约数,只要在$lcm$的分解质因数里对每一个质因子讨论种数即可. 具体来说,对于$lcm$的一个质因子$p$,讨论$ ...
- 「NOIP2009」Hankson的趣味题
题目描述 (由于本题是数论题,所以我只把题目大意说一下...) 输入时给定\(a_0,a_1,b_0,b_1\),题目要求你求出满足如下条件的\(x\)的个数: \[\begin{cases}\gcd ...
- 【NOIP2009】Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...
- NOIP2009 T2 Hankson的趣味题
传送门 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上, ...
- 【NOIP2009】Hankson的趣味题
题意:给出 \(a_0\), \(a_1\), \(b_0\), \(b_1\), 求出正整数 \(x\) 的个数,\(x\) 满足: \(gcd(x,a_0)=a_1\) , \(lcm(x, b_ ...
- 洛谷P1072 [NOIP2009] Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- CH3201 Hankson的趣味题
题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson ...
- 一本通1626【例 2】Hankson 的趣味题
1626:[例 2]Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考 ...
- 1626:【例 2】Hankson 的趣味题
1626:[例 2]Hankson 的趣味题题解 [题目描述] Hanks 博士是 BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson ...
随机推荐
- 应用 AddressSanitizer 发现程序内存错误
作为 C/ C++ 工程师,在开发过程中会遇到各类问题,最常见便是内存使用问题,比如,越界,泄漏.过去常用的工具是 Valgrind,但使用 Valgrind 最大问题是它会极大地降低程序运行的速度, ...
- 「NOI2016」区间
传送门 Luogu 解题思路 对于选出的区间,我们可以直接用线段树维护区间内单点被覆盖次数最大值. 那么解题重心便落在了选取方式上. 为了让最大值最小,考虑尺取,不能二分,降低效率而且不好写. 先将区 ...
- C:数值溢出问题
当超过一个数据类型能够存放最大的范围时,数值会溢出. 有符号位最高位溢出的区别:符号位溢出会导致数的正负发生改变,但最高位的溢出会导致最高位丢失. #include <stdio.h> i ...
- idea 启动java项目报 java: 程序包org.apache.jasper.tagplugins.jstl.core不存在
File -- Project Structure
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 算术函数
NumPy 算术函数包含简单的加减乘除: add(),subtract(),multiply() 和 divide(). 需要注意的是数组必须具有相同的形状或符合数组广播规则. import nump ...
- vscode vue js 开发插件配置
安装 vetur { // 自动补全触发范围---双引号内的字符串也可以触发补全 "editor.quickSuggestions": { "other": t ...
- 开源代码License
参考:https://mp.weixin.qq.com/s/Q29NGDIbyCwm6KiAKqI46A
- linux 管道相关命令(待学)
1.1 cut cut:以某种方式按照文件的行进行分割 参数列表: -b 按字节选取 忽略多字节字符边界,除非也指定了 -n 标志 -c 按字符选取 -d 自定义分隔符,默认为制表符. -f 与-d一 ...
- [总结]一些 DP 优化方法
目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...
- 解决方法:Could not load file or assembly 'WebGrease, Version=1.5.1.25624, Culture=neutral, PublicKeyToken=31bf3856ad364e35' or one of its dependencies.
最近使用VS2015调试ASP.NET 程序遇到了该问题: 在网上找了很多方法都不能解决,最后自己解决了,方法如下: 在project -> NuGet管理中找到已安装的所有程序:将Web Op ...