I - Transformation

Yuanfang is puzzled with the question below: 
There are n integers, a 1, a 2, …, a n. The initial values of them are 0. There are four kinds of operations. 
Operation 1: Add c to each number between a x and a y inclusive. In other words, do transformation a k<---a k+c, k = x,x+1,…,y. 
Operation 2: Multiply c to each number between a x and a y inclusive. In other words, do transformation a k<---a k×c, k = x,x+1,…,y. 
Operation 3: Change the numbers between a x and a y to c, inclusive. In other words, do transformation a k<---c, k = x,x+1,…,y. 
Operation 4: Get the sum of p power among the numbers between a x and a y inclusive. In other words, get the result of a x p+a x+1 p+…+a y p
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 

InputThere are no more than 10 test cases. 
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000. 
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3) 
The input ends with 0 0. 
OutputFor each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.Sample Input

5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

307
7489 题目思路:
这个题目是一个裸的线段树,有四种操作,
第一种就是区间更新,在每一个数值+c
第二种就是每一个位置*c
第三种就是把每一个位置的数更新成c
第四种求每一个数的c次方的和
前面三种就是普通的线段树,最后一种因为c比较小,最大只有三所以就在结构体里面枚举三种情况就可以了。
第一种和第二张要设置两个lazy标志,第三种也要设置,但是如果第三种成立则之前的lazy标志都要删去,一共有了三种lazy标志。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std;
const int MOD = ;
const int MAXN = ;
struct Node
{
int l,r;
int sum1,sum2,sum3;
int lazy1,lazy2,lazy3;
}segTree[MAXN*];
void build(int i,int l,int r)
{
segTree[i].l = l;
segTree[i].r = r;
segTree[i].sum1 = segTree[i].sum2 = segTree[i].sum3 = ;
segTree[i].lazy1 = segTree[i].lazy3 = ;
segTree[i].lazy2 = ;
int mid = (l+r)/;
if(l == r)return;
build(i<<,l,mid);
build((i<<)|,mid+,r);
}
void push_up(int i)
{
if(segTree[i].l == segTree[i].r)
return;
segTree[i].sum1 = (segTree[i<<].sum1 + segTree[(i<<)|].sum1)%MOD;
segTree[i].sum2 = (segTree[i<<].sum2 + segTree[(i<<)|].sum2)%MOD;
segTree[i].sum3 = (segTree[i<<].sum3 + segTree[(i<<)|].sum3)%MOD; } void push_down(int i)
{
if(segTree[i].l == segTree[i].r) return;
if(segTree[i].lazy3 != )
{
segTree[i<<].lazy3 = segTree[(i<<)|].lazy3 = segTree[i].lazy3;
segTree[i<<].lazy1 = segTree[(i<<)|].lazy1 = ;
segTree[i<<].lazy2 = segTree[(i<<)|].lazy2 = ;
segTree[i<<].sum1 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD;
segTree[i<<].sum2 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD;
segTree[i<<].sum3 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD;
segTree[(i<<)|].sum1 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD;
segTree[(i<<)|].sum2 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD;
segTree[(i<<)|].sum3 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD;
segTree[i].lazy3 = ;
}
if(segTree[i].lazy1 != || segTree[i].lazy2 != )
{
segTree[i<<].lazy1 = ( segTree[i].lazy2*segTree[i<<].lazy1%MOD + segTree[i].lazy1 )%MOD;
segTree[i<<].lazy2 = segTree[i<<].lazy2*segTree[i].lazy2%MOD;
int sum1,sum2,sum3;
sum1 = (segTree[i<<].sum1*segTree[i].lazy2%MOD + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD)%MOD;
sum2 = (segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i<<].sum2 % MOD + *segTree[i].lazy1*segTree[i].lazy2%MOD * segTree[i<<].sum1%MOD + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD*segTree[i].lazy1%MOD)%MOD;
sum3 = segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i<<].sum3 % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i<<].sum2) % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD * segTree[i<<].sum1) % MOD;
sum3 = (sum3 + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD) % MOD;
segTree[i<<].sum1 = sum1;
segTree[i<<].sum2 = sum2;
segTree[i<<].sum3 = sum3;
segTree[(i<<)|].lazy1 = ( segTree[i].lazy2*segTree[(i<<)|].lazy1%MOD + segTree[i].lazy1 )%MOD;
segTree[(i<<)|].lazy2 = segTree[(i<<)|].lazy2 * segTree[i].lazy2 % MOD;
sum1 = (segTree[(i<<)|].sum1*segTree[i].lazy2%MOD + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD)%MOD;
sum2 = (segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[(i<<)|].sum2 % MOD + *segTree[i].lazy1*segTree[i].lazy2%MOD * segTree[(i<<)|].sum1%MOD + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD*segTree[i].lazy1%MOD)%MOD;
sum3 = segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[(i<<)|].sum3 % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[(i<<)|].sum2) % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD * segTree[(i<<)|].sum1) % MOD;
sum3 = (sum3 + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD) % MOD;
segTree[(i<<)|].sum1 = sum1;
segTree[(i<<)|].sum2 = sum2;
segTree[(i<<)|].sum3 = sum3;
segTree[i].lazy1 = ;
segTree[i].lazy2 = ; }
}
void update(int i,int l,int r,int type,int c)
{
if(segTree[i].l == l && segTree[i].r == r)
{
c %= MOD;
if(type == )
{
segTree[i].lazy1 += c;
segTree[i].lazy1 %= MOD;
segTree[i].sum3 = (segTree[i].sum3 + *segTree[i].sum2%MOD*c%MOD + *segTree[i].sum1%MOD*c%MOD*c%MOD + (segTree[i].r - segTree[i].l + )*c%MOD*c%MOD*c%MOD)%MOD;
segTree[i].sum2 = (segTree[i].sum2 + *segTree[i].sum1%MOD*c%MOD + (segTree[i].r - segTree[i].l + )*c%MOD*c%MOD)%MOD;
segTree[i].sum1 = (segTree[i].sum1 + (segTree[i].r - segTree[i].l + )*c%MOD)%MOD;
}
else if(type == )
{
segTree[i].lazy1 = segTree[i].lazy1*c%MOD;
segTree[i].lazy2 = segTree[i].lazy2*c%MOD;
segTree[i].sum1 = segTree[i].sum1*c%MOD;
segTree[i].sum2 = segTree[i].sum2*c%MOD*c%MOD;
segTree[i].sum3 = segTree[i].sum3*c%MOD*c%MOD*c%MOD;
}
else
{
segTree[i].lazy1 = ;
segTree[i].lazy2 = ;
segTree[i].lazy3 = c%MOD;
segTree[i].sum1 = c*(segTree[i].r - segTree[i].l + )%MOD;
segTree[i].sum2 = c*(segTree[i].r - segTree[i].l + )%MOD*c%MOD;
segTree[i].sum3 = c*(segTree[i].r - segTree[i].l + )%MOD*c%MOD*c%MOD;
}
return;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r)/;
if(r <= mid)update(i<<,l,r,type,c);
else if(l > mid)update((i<<)|,l,r,type,c);
else
{
update(i<<,l,mid,type,c);
update((i<<)|,mid+,r,type,c);
}
push_up(i);
}
int query(int i,int l,int r,int p)
{
if(segTree[i].l == l && segTree[i].r == r)
{
if(p == )return segTree[i].sum1;
else if(p== )return segTree[i].sum2;
else return segTree[i].sum3;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r )/;
if(r <= mid)return query(i<<,l,r,p);
else if(l > mid)return query((i<<)|,l,r,p);
else return (query(i<<,l,mid,p)+query((i<<)|,mid+,r,p))%MOD;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m) == )
{
if(n == && m == )break;
build(,,n);
int type,x,y,c;
while(m--)
{
scanf("%d%d%d%d",&type,&x,&y,&c);
if(type == )printf("%d\n",query(,x,y,c));
else update(,x,y,type,c);
}
}
return ;
}

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <queue>
#include <math.h>
#define LL long long
using namespace std;
const LL MAX = 1e6 + ;
LL INF = 1e8;
LL MOD = ; LL PowerMod(LL a, LL b)
{
LL ans = ;
a = a % MOD;
while(b > ) {
if(b % == )
ans = (ans * a) % MOD;
b = b / ;
a = (a * a) % MOD;
}
return ans;
} LL a[MAX];
LL lazy[MAX << ][]; void PushDown(LL rt){
if(lazy[rt][] != -){
lazy[rt << ][] = lazy[rt << | ][] = lazy[rt][] % MOD;
lazy[rt << ][] = lazy[rt << | ][] = ;
lazy[rt << ][] = lazy[rt << | ][] = ;
lazy[rt][] = -;
} if(lazy[rt][] != ){
if(lazy[rt << ][] != -){
lazy[rt << ][] *= lazy[rt][];
lazy[rt << ][] %= MOD;
} else{
PushDown(rt << );
lazy[rt << ][] *= lazy[rt][];
lazy[rt << ][] %= MOD;
} if(lazy[rt << | ][] != -){
lazy[rt << | ][] *= lazy[rt][];
lazy[rt << | ][] %= MOD;
} else{
PushDown(rt << | );
lazy[rt << | ][] *= lazy[rt][];
lazy[rt << | ][] %= MOD;;
}
lazy[rt][] = ;
} if(lazy[rt][] != ){
if(lazy[rt << ][] != -){
lazy[rt << ][] += lazy[rt][];
lazy[rt << ][] %= MOD;
} else{
PushDown(rt << );
lazy[rt << ][] += lazy[rt][];
lazy[rt << ][] %= MOD;
} if(lazy[rt << | ][] != -){
lazy[rt << | ][] += lazy[rt][];
lazy[rt << | ][] %= MOD;
} else{
PushDown(rt << | );
lazy[rt << | ][] += lazy[rt][];
lazy[rt << | ][] %= MOD;
}
lazy[rt][] = ;
}
} void Build(LL l, LL r, LL rt){
lazy[rt][] = -;
lazy[rt][] = ;
lazy[rt][] = ;
if(l == r){
lazy[rt][] = ;
return ;
}
LL m = (l + r) >> ;
Build(l, m, rt << );
Build(m + , r, rt << | );
} LL L, R, C;
void Update0(LL l, LL r, LL rt){
if(L <= l && r <= R){
lazy[rt][] = C;
lazy[rt][] %= MOD;
lazy[rt][] = ;
lazy[rt][] = ;
return ;
}
PushDown(rt);
LL m = (l + r) >> ;
if(L <= m){
Update0(l, m, rt << );
}
if(R > m){
Update0(m + , r, rt << | );
}
} void Update1(LL l, LL r, LL rt){
if(L <= l && r <= R){
if(lazy[rt][] != -){
lazy[rt][] *= C;
lazy[rt][] %= MOD;
} else{
PushDown(rt);
lazy[rt][] *= C;
lazy[rt][] %= MOD;
}
return ;
} LL m = (l + r) >> ;
PushDown(rt);
if(L <= m){
Update1(l, m, rt << );
}
if(R > m){
Update1(m + , r, rt << | );
}
} void Update2(LL l, LL r, LL rt){
if(L <= l && r <= R){
if(lazy[rt][] != -){
lazy[rt][] += C;
lazy[rt][] %= MOD;
} else{
PushDown(rt);
lazy[rt][] += C;
lazy[rt][] %= MOD;
}
return ;
} LL m = (l + r) >> ;
PushDown(rt);
if(L <= m){
Update2(l, m, rt << );
}
if(R > m){
Update2(m + , r, rt << | );
}
} LL ans = ;
void Query(LL l, LL r, LL rt){
if(L <= l && r <= R && lazy[rt][] != -){
ans = ans + (r - l + ) * PowerMod(lazy[rt][], C);
ans %= MOD;
return ;
} PushDown(rt);
LL m = (l + r) >> ;
if(L <= m){
Query(l, m, rt << );
}
if(R > m){
Query(m + , r, rt << | );
}
}
int main(int argc, char const *argv[])
{
LL n, m; while(){
scanf("%lld%lld", &n, &m);
if(n == && m == ){
break;
}
Build(, n, );
while(m--){
LL op;
scanf("%lld%lld%lld%lld", &op, &L, &R, &C);
if(op == ){
Update2(, n, );
} else if(op == ){
Update1(, n, );
} else if(op == ){
Update0(, n, );
} else{
ans = ;
Query(, n, );
printf("%lld\n", ans);
}
}
}
return ;
}
												

线段树 I - Transformation 加乘优先级的更多相关文章

  1. 线段树_区间加乘(洛谷P3373模板)

    题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上x 2.将某区间每一个数加上x 3.求出某区间每一个数的和 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字 ...

  2. UESTC-1057 秋实大哥与花(线段树+成段加减+区间求和)

    秋实大哥与花 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit St ...

  3. bzoj 1835 [ZJOI2010]base 基站选址(DP+线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1835 [题意] 有n个村庄,每个村庄位于d[i],要求建立不多于k个基站,在第i个村庄 ...

  4. HDU5669 Road 分层最短路+线段树建图

    分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) ​的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...

  5. bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树

    2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 145 ...

  6. 2018 UESTC 线段树专题

    A - 一棵简单的线段树 A[1...n]初始全为0. 1. 给两个数p 和 x(1≤p≤n),单点更新 A[p] <- x 2. 给两个数L和R (1≤L<R≤n),  L到R区间里这几 ...

  7. BZOJ.4825.[AHOI/HNOI2017]单旋(线段树)

    BZOJ LOJ 洛谷 这题不难啊,我怎么就那么傻,拿随便一个节点去模拟.. 我们只需要能够维护,将最小值或最大值转到根.模拟一下发现,对于最小值,它的右子树深度不变(如果存在),其余节点深度全部\( ...

  8. [线段树]picture

    PICTURE 题目描述 N(N<5000) 张矩形的海报,照片和其他同样形状的图片贴在墙上.它们的边都是垂直的或水平的.每个矩形可以部分或者全部覆盖其他矩形.所有的矩形组成的集合的轮廓称为周长 ...

  9. bzoj 2243: [SDOI2011]染色 (树链剖分+线段树 区间合并)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9854  Solved: 3725[Submit][Status ...

随机推荐

  1. Java的多线程编程模型5--从AtomicInteger开始

    Java的多线程编程模型5--从AtomicInteger开始 2011-06-23 20:50 11393人阅读 评论(9) 收藏 举报 java多线程编程jniinteger测试 AtomicIn ...

  2. docker深入学习

    docker深入学习 一.容器的介绍和容器的发展史 为什么要学习容器? 在openstack之后,目前互联网最火热的技术莫过于docker容器了,早在2015年,京东技术备战双11就是使用了10万+D ...

  3. [算法]Miller-Robbin素数判定

    目录 一.实现原理 二.应用 判断一个正整数是否为素数 三.小结 一.实现原理 我们以前都是怎么判断素数的呢: 试除法: 若一个正整数N为合数,则存在一个能整除N的数k,其中\(2\leqslant ...

  4. Qt发送一次信号触发两次槽函数的原因

    在手动为控件编写槽函数的时候,如果将槽函数名字按如下格式编辑,则不需要再次进行手动关联 void on_pushButton_1_clicked(); void on_radioButton_clic ...

  5. python做个谷歌内核浏览器

    源码: import sys,os os.chdir(os.path.dirname(os.path.abspath(__file__))) from PyQt5.QtGui import * fro ...

  6. IO多路复用小故事

    背景故事 小王住在某城市, 生活并长大. 最近, 小城引进了一个企业, 邮局. 这个邮局可了不得, 只要你花上几角钱, 就可以将一封信送到千里之外的朋友手中. 小王也趁机体验了一把, 得劲. 这天, ...

  7. 大部分人都不知道的8个python神操作

    01 print 打印带有颜色的信息 大家知道 Python 中的信息打印函数 Print,一般我们会使用它打印一些东西,作为一个简单调试. 但是你知道么,这个 Print 打印出来的字体颜色是可以设 ...

  8. vector和数组

    对于之前没有接触过vector的初学者来说,经常会把vector和数组弄混,因为二者在用的时候比较像,下面就详细的来介绍一下vector和数组的区别. (1) 首先,vector类似于数组,有一段连续 ...

  9. LeetCode 面试题56 - I. 数组中数字出现的次数 | Python

    面试题56 - I. 数组中数字出现的次数 题目 一个整型数组 nums 里除两个数字之外,其他数字都出现了两次.请写程序找出这两个只出现一次的数字.要求时间复杂度是O(n),空间复杂度是O(1). ...

  10. Scrapy模拟登录信息

    携带cookie模拟登录 需要在爬虫里面自定义一个start_requests()的函数 里面的内容: def start_requests(self): cookies = '真实有效的cookie ...