线段树 I - Transformation 加乘优先级
I - Transformation
There are n integers, a 1, a 2, …, a n. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between a x and a y inclusive. In other words, do transformation a k<---a k+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between a x and a y inclusive. In other words, do transformation a k<---a k×c, k = x,x+1,…,y.
Operation 3: Change the numbers between a x and a y to c, inclusive. In other words, do transformation a k<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between a x and a y inclusive. In other words, get the result of a x p+a x+1 p+…+a y p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
InputThere are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
OutputFor each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
Sample Output
307
7489 题目思路:
这个题目是一个裸的线段树,有四种操作,
第一种就是区间更新,在每一个数值+c
第二种就是每一个位置*c
第三种就是把每一个位置的数更新成c
第四种求每一个数的c次方的和
前面三种就是普通的线段树,最后一种因为c比较小,最大只有三所以就在结构体里面枚举三种情况就可以了。
第一种和第二张要设置两个lazy标志,第三种也要设置,但是如果第三种成立则之前的lazy标志都要删去,一共有了三种lazy标志。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std;
const int MOD = ;
const int MAXN = ;
struct Node
{
int l,r;
int sum1,sum2,sum3;
int lazy1,lazy2,lazy3;
}segTree[MAXN*];
void build(int i,int l,int r)
{
segTree[i].l = l;
segTree[i].r = r;
segTree[i].sum1 = segTree[i].sum2 = segTree[i].sum3 = ;
segTree[i].lazy1 = segTree[i].lazy3 = ;
segTree[i].lazy2 = ;
int mid = (l+r)/;
if(l == r)return;
build(i<<,l,mid);
build((i<<)|,mid+,r);
}
void push_up(int i)
{
if(segTree[i].l == segTree[i].r)
return;
segTree[i].sum1 = (segTree[i<<].sum1 + segTree[(i<<)|].sum1)%MOD;
segTree[i].sum2 = (segTree[i<<].sum2 + segTree[(i<<)|].sum2)%MOD;
segTree[i].sum3 = (segTree[i<<].sum3 + segTree[(i<<)|].sum3)%MOD; } void push_down(int i)
{
if(segTree[i].l == segTree[i].r) return;
if(segTree[i].lazy3 != )
{
segTree[i<<].lazy3 = segTree[(i<<)|].lazy3 = segTree[i].lazy3;
segTree[i<<].lazy1 = segTree[(i<<)|].lazy1 = ;
segTree[i<<].lazy2 = segTree[(i<<)|].lazy2 = ;
segTree[i<<].sum1 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD;
segTree[i<<].sum2 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD;
segTree[i<<].sum3 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD;
segTree[(i<<)|].sum1 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD;
segTree[(i<<)|].sum2 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD;
segTree[(i<<)|].sum3 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD;
segTree[i].lazy3 = ;
}
if(segTree[i].lazy1 != || segTree[i].lazy2 != )
{
segTree[i<<].lazy1 = ( segTree[i].lazy2*segTree[i<<].lazy1%MOD + segTree[i].lazy1 )%MOD;
segTree[i<<].lazy2 = segTree[i<<].lazy2*segTree[i].lazy2%MOD;
int sum1,sum2,sum3;
sum1 = (segTree[i<<].sum1*segTree[i].lazy2%MOD + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD)%MOD;
sum2 = (segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i<<].sum2 % MOD + *segTree[i].lazy1*segTree[i].lazy2%MOD * segTree[i<<].sum1%MOD + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD*segTree[i].lazy1%MOD)%MOD;
sum3 = segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i<<].sum3 % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i<<].sum2) % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD * segTree[i<<].sum1) % MOD;
sum3 = (sum3 + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD) % MOD;
segTree[i<<].sum1 = sum1;
segTree[i<<].sum2 = sum2;
segTree[i<<].sum3 = sum3;
segTree[(i<<)|].lazy1 = ( segTree[i].lazy2*segTree[(i<<)|].lazy1%MOD + segTree[i].lazy1 )%MOD;
segTree[(i<<)|].lazy2 = segTree[(i<<)|].lazy2 * segTree[i].lazy2 % MOD;
sum1 = (segTree[(i<<)|].sum1*segTree[i].lazy2%MOD + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD)%MOD;
sum2 = (segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[(i<<)|].sum2 % MOD + *segTree[i].lazy1*segTree[i].lazy2%MOD * segTree[(i<<)|].sum1%MOD + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD*segTree[i].lazy1%MOD)%MOD;
sum3 = segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[(i<<)|].sum3 % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[(i<<)|].sum2) % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD * segTree[(i<<)|].sum1) % MOD;
sum3 = (sum3 + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD) % MOD;
segTree[(i<<)|].sum1 = sum1;
segTree[(i<<)|].sum2 = sum2;
segTree[(i<<)|].sum3 = sum3;
segTree[i].lazy1 = ;
segTree[i].lazy2 = ; }
}
void update(int i,int l,int r,int type,int c)
{
if(segTree[i].l == l && segTree[i].r == r)
{
c %= MOD;
if(type == )
{
segTree[i].lazy1 += c;
segTree[i].lazy1 %= MOD;
segTree[i].sum3 = (segTree[i].sum3 + *segTree[i].sum2%MOD*c%MOD + *segTree[i].sum1%MOD*c%MOD*c%MOD + (segTree[i].r - segTree[i].l + )*c%MOD*c%MOD*c%MOD)%MOD;
segTree[i].sum2 = (segTree[i].sum2 + *segTree[i].sum1%MOD*c%MOD + (segTree[i].r - segTree[i].l + )*c%MOD*c%MOD)%MOD;
segTree[i].sum1 = (segTree[i].sum1 + (segTree[i].r - segTree[i].l + )*c%MOD)%MOD;
}
else if(type == )
{
segTree[i].lazy1 = segTree[i].lazy1*c%MOD;
segTree[i].lazy2 = segTree[i].lazy2*c%MOD;
segTree[i].sum1 = segTree[i].sum1*c%MOD;
segTree[i].sum2 = segTree[i].sum2*c%MOD*c%MOD;
segTree[i].sum3 = segTree[i].sum3*c%MOD*c%MOD*c%MOD;
}
else
{
segTree[i].lazy1 = ;
segTree[i].lazy2 = ;
segTree[i].lazy3 = c%MOD;
segTree[i].sum1 = c*(segTree[i].r - segTree[i].l + )%MOD;
segTree[i].sum2 = c*(segTree[i].r - segTree[i].l + )%MOD*c%MOD;
segTree[i].sum3 = c*(segTree[i].r - segTree[i].l + )%MOD*c%MOD*c%MOD;
}
return;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r)/;
if(r <= mid)update(i<<,l,r,type,c);
else if(l > mid)update((i<<)|,l,r,type,c);
else
{
update(i<<,l,mid,type,c);
update((i<<)|,mid+,r,type,c);
}
push_up(i);
}
int query(int i,int l,int r,int p)
{
if(segTree[i].l == l && segTree[i].r == r)
{
if(p == )return segTree[i].sum1;
else if(p== )return segTree[i].sum2;
else return segTree[i].sum3;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r )/;
if(r <= mid)return query(i<<,l,r,p);
else if(l > mid)return query((i<<)|,l,r,p);
else return (query(i<<,l,mid,p)+query((i<<)|,mid+,r,p))%MOD;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m) == )
{
if(n == && m == )break;
build(,,n);
int type,x,y,c;
while(m--)
{
scanf("%d%d%d%d",&type,&x,&y,&c);
if(type == )printf("%d\n",query(,x,y,c));
else update(,x,y,type,c);
}
}
return ;
}
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <queue>
#include <math.h>
#define LL long long
using namespace std;
const LL MAX = 1e6 + ;
LL INF = 1e8;
LL MOD = ; LL PowerMod(LL a, LL b)
{
LL ans = ;
a = a % MOD;
while(b > ) {
if(b % == )
ans = (ans * a) % MOD;
b = b / ;
a = (a * a) % MOD;
}
return ans;
} LL a[MAX];
LL lazy[MAX << ][]; void PushDown(LL rt){
if(lazy[rt][] != -){
lazy[rt << ][] = lazy[rt << | ][] = lazy[rt][] % MOD;
lazy[rt << ][] = lazy[rt << | ][] = ;
lazy[rt << ][] = lazy[rt << | ][] = ;
lazy[rt][] = -;
} if(lazy[rt][] != ){
if(lazy[rt << ][] != -){
lazy[rt << ][] *= lazy[rt][];
lazy[rt << ][] %= MOD;
} else{
PushDown(rt << );
lazy[rt << ][] *= lazy[rt][];
lazy[rt << ][] %= MOD;
} if(lazy[rt << | ][] != -){
lazy[rt << | ][] *= lazy[rt][];
lazy[rt << | ][] %= MOD;
} else{
PushDown(rt << | );
lazy[rt << | ][] *= lazy[rt][];
lazy[rt << | ][] %= MOD;;
}
lazy[rt][] = ;
} if(lazy[rt][] != ){
if(lazy[rt << ][] != -){
lazy[rt << ][] += lazy[rt][];
lazy[rt << ][] %= MOD;
} else{
PushDown(rt << );
lazy[rt << ][] += lazy[rt][];
lazy[rt << ][] %= MOD;
} if(lazy[rt << | ][] != -){
lazy[rt << | ][] += lazy[rt][];
lazy[rt << | ][] %= MOD;
} else{
PushDown(rt << | );
lazy[rt << | ][] += lazy[rt][];
lazy[rt << | ][] %= MOD;
}
lazy[rt][] = ;
}
} void Build(LL l, LL r, LL rt){
lazy[rt][] = -;
lazy[rt][] = ;
lazy[rt][] = ;
if(l == r){
lazy[rt][] = ;
return ;
}
LL m = (l + r) >> ;
Build(l, m, rt << );
Build(m + , r, rt << | );
} LL L, R, C;
void Update0(LL l, LL r, LL rt){
if(L <= l && r <= R){
lazy[rt][] = C;
lazy[rt][] %= MOD;
lazy[rt][] = ;
lazy[rt][] = ;
return ;
}
PushDown(rt);
LL m = (l + r) >> ;
if(L <= m){
Update0(l, m, rt << );
}
if(R > m){
Update0(m + , r, rt << | );
}
} void Update1(LL l, LL r, LL rt){
if(L <= l && r <= R){
if(lazy[rt][] != -){
lazy[rt][] *= C;
lazy[rt][] %= MOD;
} else{
PushDown(rt);
lazy[rt][] *= C;
lazy[rt][] %= MOD;
}
return ;
} LL m = (l + r) >> ;
PushDown(rt);
if(L <= m){
Update1(l, m, rt << );
}
if(R > m){
Update1(m + , r, rt << | );
}
} void Update2(LL l, LL r, LL rt){
if(L <= l && r <= R){
if(lazy[rt][] != -){
lazy[rt][] += C;
lazy[rt][] %= MOD;
} else{
PushDown(rt);
lazy[rt][] += C;
lazy[rt][] %= MOD;
}
return ;
} LL m = (l + r) >> ;
PushDown(rt);
if(L <= m){
Update2(l, m, rt << );
}
if(R > m){
Update2(m + , r, rt << | );
}
} LL ans = ;
void Query(LL l, LL r, LL rt){
if(L <= l && r <= R && lazy[rt][] != -){
ans = ans + (r - l + ) * PowerMod(lazy[rt][], C);
ans %= MOD;
return ;
} PushDown(rt);
LL m = (l + r) >> ;
if(L <= m){
Query(l, m, rt << );
}
if(R > m){
Query(m + , r, rt << | );
}
}
int main(int argc, char const *argv[])
{
LL n, m; while(){
scanf("%lld%lld", &n, &m);
if(n == && m == ){
break;
}
Build(, n, );
while(m--){
LL op;
scanf("%lld%lld%lld%lld", &op, &L, &R, &C);
if(op == ){
Update2(, n, );
} else if(op == ){
Update1(, n, );
} else if(op == ){
Update0(, n, );
} else{
ans = ;
Query(, n, );
printf("%lld\n", ans);
}
}
}
return ;
}
线段树 I - Transformation 加乘优先级的更多相关文章
- 线段树_区间加乘(洛谷P3373模板)
题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上x 2.将某区间每一个数加上x 3.求出某区间每一个数的和 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字 ...
- UESTC-1057 秋实大哥与花(线段树+成段加减+区间求和)
秋实大哥与花 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submit St ...
- bzoj 1835 [ZJOI2010]base 基站选址(DP+线段树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1835 [题意] 有n个村庄,每个村庄位于d[i],要求建立不多于k个基站,在第i个村庄 ...
- HDU5669 Road 分层最短路+线段树建图
分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) 的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...
- bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树
2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 145 ...
- 2018 UESTC 线段树专题
A - 一棵简单的线段树 A[1...n]初始全为0. 1. 给两个数p 和 x(1≤p≤n),单点更新 A[p] <- x 2. 给两个数L和R (1≤L<R≤n), L到R区间里这几 ...
- BZOJ.4825.[AHOI/HNOI2017]单旋(线段树)
BZOJ LOJ 洛谷 这题不难啊,我怎么就那么傻,拿随便一个节点去模拟.. 我们只需要能够维护,将最小值或最大值转到根.模拟一下发现,对于最小值,它的右子树深度不变(如果存在),其余节点深度全部\( ...
- [线段树]picture
PICTURE 题目描述 N(N<5000) 张矩形的海报,照片和其他同样形状的图片贴在墙上.它们的边都是垂直的或水平的.每个矩形可以部分或者全部覆盖其他矩形.所有的矩形组成的集合的轮廓称为周长 ...
- bzoj 2243: [SDOI2011]染色 (树链剖分+线段树 区间合并)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9854 Solved: 3725[Submit][Status ...
随机推荐
- windows 环境下dos 命令符下进D盘(非c盘系统盘)根目录
怎么进? 先 cd D: 然后 直接 D: 即可到D盘根目录,至于为啥要输入2遍D 才进D盘根目录,这就是windows的规定
- JAVA开发中相对路径,绝对路径全面总结
JAVA开发中相对路径,绝对路径全面总结 博客分类: Java综合 JavaJSP应用服务器Servlet网络应用 1.基本概念的理解 绝对路径:绝对路径就是你的主页上的文件或目录在硬盘上真正的路径, ...
- 014-预处理指令-C语言笔记
014-预处理指令-C语言笔记 学习目标 1.[掌握]枚举 2.[掌握]typedef关键字 3.[理解]预处理指令 4.[掌握]#define宏定义 5.[掌握]条件编译 6.[掌握]static与 ...
- [总结]RMQ问题&ST算法
目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...
- 10个步骤教你如何安装Anaconda安装,Python数据分析入门必看
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:小白 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行 ...
- python从零开始基础入门——开发环境搭建:Visual Studio Code
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:山海皆可平z PS:如有需要Python学习资料的小伙伴可以加点击下方 ...
- Labyrinth 树的直径加DFS
The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is d ...
- Laravel中使用JWT
Laravel 版本: Laravel Framework 6.18.3 查看版本命令: php artisan -V 1.安装JWT扩展包: composer require tymon/jwt-a ...
- Mysql使用终端操作数据库
使用终端操作数据库 1.如何查看有什么数据库? show databases; 2.如何选择数据库? use databasesName; 3. ...
- CISCN love_math和roarctf的easy_clac学习分析
Love_math 题目源码: <?php error_reporting(0); //听说你很喜欢数学,不知道你是否爱它胜过爱flag if(!isset($_GET['c'])){ show ...