I - Transformation

Yuanfang is puzzled with the question below: 
There are n integers, a 1, a 2, …, a n. The initial values of them are 0. There are four kinds of operations. 
Operation 1: Add c to each number between a x and a y inclusive. In other words, do transformation a k<---a k+c, k = x,x+1,…,y. 
Operation 2: Multiply c to each number between a x and a y inclusive. In other words, do transformation a k<---a k×c, k = x,x+1,…,y. 
Operation 3: Change the numbers between a x and a y to c, inclusive. In other words, do transformation a k<---c, k = x,x+1,…,y. 
Operation 4: Get the sum of p power among the numbers between a x and a y inclusive. In other words, get the result of a x p+a x+1 p+…+a y p
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 

InputThere are no more than 10 test cases. 
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000. 
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3) 
The input ends with 0 0. 
OutputFor each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.Sample Input

5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

307
7489 题目思路:
这个题目是一个裸的线段树,有四种操作,
第一种就是区间更新,在每一个数值+c
第二种就是每一个位置*c
第三种就是把每一个位置的数更新成c
第四种求每一个数的c次方的和
前面三种就是普通的线段树,最后一种因为c比较小,最大只有三所以就在结构体里面枚举三种情况就可以了。
第一种和第二张要设置两个lazy标志,第三种也要设置,但是如果第三种成立则之前的lazy标志都要删去,一共有了三种lazy标志。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std;
const int MOD = ;
const int MAXN = ;
struct Node
{
int l,r;
int sum1,sum2,sum3;
int lazy1,lazy2,lazy3;
}segTree[MAXN*];
void build(int i,int l,int r)
{
segTree[i].l = l;
segTree[i].r = r;
segTree[i].sum1 = segTree[i].sum2 = segTree[i].sum3 = ;
segTree[i].lazy1 = segTree[i].lazy3 = ;
segTree[i].lazy2 = ;
int mid = (l+r)/;
if(l == r)return;
build(i<<,l,mid);
build((i<<)|,mid+,r);
}
void push_up(int i)
{
if(segTree[i].l == segTree[i].r)
return;
segTree[i].sum1 = (segTree[i<<].sum1 + segTree[(i<<)|].sum1)%MOD;
segTree[i].sum2 = (segTree[i<<].sum2 + segTree[(i<<)|].sum2)%MOD;
segTree[i].sum3 = (segTree[i<<].sum3 + segTree[(i<<)|].sum3)%MOD; } void push_down(int i)
{
if(segTree[i].l == segTree[i].r) return;
if(segTree[i].lazy3 != )
{
segTree[i<<].lazy3 = segTree[(i<<)|].lazy3 = segTree[i].lazy3;
segTree[i<<].lazy1 = segTree[(i<<)|].lazy1 = ;
segTree[i<<].lazy2 = segTree[(i<<)|].lazy2 = ;
segTree[i<<].sum1 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD;
segTree[i<<].sum2 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD;
segTree[i<<].sum3 = (segTree[i<<].r - segTree[i<<].l + )*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD*segTree[i<<].lazy3%MOD;
segTree[(i<<)|].sum1 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD;
segTree[(i<<)|].sum2 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD;
segTree[(i<<)|].sum3 = (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD*segTree[(i<<)|].lazy3%MOD;
segTree[i].lazy3 = ;
}
if(segTree[i].lazy1 != || segTree[i].lazy2 != )
{
segTree[i<<].lazy1 = ( segTree[i].lazy2*segTree[i<<].lazy1%MOD + segTree[i].lazy1 )%MOD;
segTree[i<<].lazy2 = segTree[i<<].lazy2*segTree[i].lazy2%MOD;
int sum1,sum2,sum3;
sum1 = (segTree[i<<].sum1*segTree[i].lazy2%MOD + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD)%MOD;
sum2 = (segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i<<].sum2 % MOD + *segTree[i].lazy1*segTree[i].lazy2%MOD * segTree[i<<].sum1%MOD + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD*segTree[i].lazy1%MOD)%MOD;
sum3 = segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i<<].sum3 % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i<<].sum2) % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD * segTree[i<<].sum1) % MOD;
sum3 = (sum3 + (segTree[i<<].r - segTree[i<<].l + )*segTree[i].lazy1%MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD) % MOD;
segTree[i<<].sum1 = sum1;
segTree[i<<].sum2 = sum2;
segTree[i<<].sum3 = sum3;
segTree[(i<<)|].lazy1 = ( segTree[i].lazy2*segTree[(i<<)|].lazy1%MOD + segTree[i].lazy1 )%MOD;
segTree[(i<<)|].lazy2 = segTree[(i<<)|].lazy2 * segTree[i].lazy2 % MOD;
sum1 = (segTree[(i<<)|].sum1*segTree[i].lazy2%MOD + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD)%MOD;
sum2 = (segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[(i<<)|].sum2 % MOD + *segTree[i].lazy1*segTree[i].lazy2%MOD * segTree[(i<<)|].sum1%MOD + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD*segTree[i].lazy1%MOD)%MOD;
sum3 = segTree[i].lazy2 * segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[(i<<)|].sum3 % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[(i<<)|].sum2) % MOD;
sum3 = (sum3 + *segTree[i].lazy2 % MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD * segTree[(i<<)|].sum1) % MOD;
sum3 = (sum3 + (segTree[(i<<)|].r - segTree[(i<<)|].l + )*segTree[i].lazy1%MOD * segTree[i].lazy1 % MOD * segTree[i].lazy1 % MOD) % MOD;
segTree[(i<<)|].sum1 = sum1;
segTree[(i<<)|].sum2 = sum2;
segTree[(i<<)|].sum3 = sum3;
segTree[i].lazy1 = ;
segTree[i].lazy2 = ; }
}
void update(int i,int l,int r,int type,int c)
{
if(segTree[i].l == l && segTree[i].r == r)
{
c %= MOD;
if(type == )
{
segTree[i].lazy1 += c;
segTree[i].lazy1 %= MOD;
segTree[i].sum3 = (segTree[i].sum3 + *segTree[i].sum2%MOD*c%MOD + *segTree[i].sum1%MOD*c%MOD*c%MOD + (segTree[i].r - segTree[i].l + )*c%MOD*c%MOD*c%MOD)%MOD;
segTree[i].sum2 = (segTree[i].sum2 + *segTree[i].sum1%MOD*c%MOD + (segTree[i].r - segTree[i].l + )*c%MOD*c%MOD)%MOD;
segTree[i].sum1 = (segTree[i].sum1 + (segTree[i].r - segTree[i].l + )*c%MOD)%MOD;
}
else if(type == )
{
segTree[i].lazy1 = segTree[i].lazy1*c%MOD;
segTree[i].lazy2 = segTree[i].lazy2*c%MOD;
segTree[i].sum1 = segTree[i].sum1*c%MOD;
segTree[i].sum2 = segTree[i].sum2*c%MOD*c%MOD;
segTree[i].sum3 = segTree[i].sum3*c%MOD*c%MOD*c%MOD;
}
else
{
segTree[i].lazy1 = ;
segTree[i].lazy2 = ;
segTree[i].lazy3 = c%MOD;
segTree[i].sum1 = c*(segTree[i].r - segTree[i].l + )%MOD;
segTree[i].sum2 = c*(segTree[i].r - segTree[i].l + )%MOD*c%MOD;
segTree[i].sum3 = c*(segTree[i].r - segTree[i].l + )%MOD*c%MOD*c%MOD;
}
return;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r)/;
if(r <= mid)update(i<<,l,r,type,c);
else if(l > mid)update((i<<)|,l,r,type,c);
else
{
update(i<<,l,mid,type,c);
update((i<<)|,mid+,r,type,c);
}
push_up(i);
}
int query(int i,int l,int r,int p)
{
if(segTree[i].l == l && segTree[i].r == r)
{
if(p == )return segTree[i].sum1;
else if(p== )return segTree[i].sum2;
else return segTree[i].sum3;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r )/;
if(r <= mid)return query(i<<,l,r,p);
else if(l > mid)return query((i<<)|,l,r,p);
else return (query(i<<,l,mid,p)+query((i<<)|,mid+,r,p))%MOD;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m) == )
{
if(n == && m == )break;
build(,,n);
int type,x,y,c;
while(m--)
{
scanf("%d%d%d%d",&type,&x,&y,&c);
if(type == )printf("%d\n",query(,x,y,c));
else update(,x,y,type,c);
}
}
return ;
}

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <queue>
#include <math.h>
#define LL long long
using namespace std;
const LL MAX = 1e6 + ;
LL INF = 1e8;
LL MOD = ; LL PowerMod(LL a, LL b)
{
LL ans = ;
a = a % MOD;
while(b > ) {
if(b % == )
ans = (ans * a) % MOD;
b = b / ;
a = (a * a) % MOD;
}
return ans;
} LL a[MAX];
LL lazy[MAX << ][]; void PushDown(LL rt){
if(lazy[rt][] != -){
lazy[rt << ][] = lazy[rt << | ][] = lazy[rt][] % MOD;
lazy[rt << ][] = lazy[rt << | ][] = ;
lazy[rt << ][] = lazy[rt << | ][] = ;
lazy[rt][] = -;
} if(lazy[rt][] != ){
if(lazy[rt << ][] != -){
lazy[rt << ][] *= lazy[rt][];
lazy[rt << ][] %= MOD;
} else{
PushDown(rt << );
lazy[rt << ][] *= lazy[rt][];
lazy[rt << ][] %= MOD;
} if(lazy[rt << | ][] != -){
lazy[rt << | ][] *= lazy[rt][];
lazy[rt << | ][] %= MOD;
} else{
PushDown(rt << | );
lazy[rt << | ][] *= lazy[rt][];
lazy[rt << | ][] %= MOD;;
}
lazy[rt][] = ;
} if(lazy[rt][] != ){
if(lazy[rt << ][] != -){
lazy[rt << ][] += lazy[rt][];
lazy[rt << ][] %= MOD;
} else{
PushDown(rt << );
lazy[rt << ][] += lazy[rt][];
lazy[rt << ][] %= MOD;
} if(lazy[rt << | ][] != -){
lazy[rt << | ][] += lazy[rt][];
lazy[rt << | ][] %= MOD;
} else{
PushDown(rt << | );
lazy[rt << | ][] += lazy[rt][];
lazy[rt << | ][] %= MOD;
}
lazy[rt][] = ;
}
} void Build(LL l, LL r, LL rt){
lazy[rt][] = -;
lazy[rt][] = ;
lazy[rt][] = ;
if(l == r){
lazy[rt][] = ;
return ;
}
LL m = (l + r) >> ;
Build(l, m, rt << );
Build(m + , r, rt << | );
} LL L, R, C;
void Update0(LL l, LL r, LL rt){
if(L <= l && r <= R){
lazy[rt][] = C;
lazy[rt][] %= MOD;
lazy[rt][] = ;
lazy[rt][] = ;
return ;
}
PushDown(rt);
LL m = (l + r) >> ;
if(L <= m){
Update0(l, m, rt << );
}
if(R > m){
Update0(m + , r, rt << | );
}
} void Update1(LL l, LL r, LL rt){
if(L <= l && r <= R){
if(lazy[rt][] != -){
lazy[rt][] *= C;
lazy[rt][] %= MOD;
} else{
PushDown(rt);
lazy[rt][] *= C;
lazy[rt][] %= MOD;
}
return ;
} LL m = (l + r) >> ;
PushDown(rt);
if(L <= m){
Update1(l, m, rt << );
}
if(R > m){
Update1(m + , r, rt << | );
}
} void Update2(LL l, LL r, LL rt){
if(L <= l && r <= R){
if(lazy[rt][] != -){
lazy[rt][] += C;
lazy[rt][] %= MOD;
} else{
PushDown(rt);
lazy[rt][] += C;
lazy[rt][] %= MOD;
}
return ;
} LL m = (l + r) >> ;
PushDown(rt);
if(L <= m){
Update2(l, m, rt << );
}
if(R > m){
Update2(m + , r, rt << | );
}
} LL ans = ;
void Query(LL l, LL r, LL rt){
if(L <= l && r <= R && lazy[rt][] != -){
ans = ans + (r - l + ) * PowerMod(lazy[rt][], C);
ans %= MOD;
return ;
} PushDown(rt);
LL m = (l + r) >> ;
if(L <= m){
Query(l, m, rt << );
}
if(R > m){
Query(m + , r, rt << | );
}
}
int main(int argc, char const *argv[])
{
LL n, m; while(){
scanf("%lld%lld", &n, &m);
if(n == && m == ){
break;
}
Build(, n, );
while(m--){
LL op;
scanf("%lld%lld%lld%lld", &op, &L, &R, &C);
if(op == ){
Update2(, n, );
} else if(op == ){
Update1(, n, );
} else if(op == ){
Update0(, n, );
} else{
ans = ;
Query(, n, );
printf("%lld\n", ans);
}
}
}
return ;
}
												

线段树 I - Transformation 加乘优先级的更多相关文章

  1. 线段树_区间加乘(洛谷P3373模板)

    题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上x 2.将某区间每一个数加上x 3.求出某区间每一个数的和 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字 ...

  2. UESTC-1057 秋实大哥与花(线段树+成段加减+区间求和)

    秋实大哥与花 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit St ...

  3. bzoj 1835 [ZJOI2010]base 基站选址(DP+线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1835 [题意] 有n个村庄,每个村庄位于d[i],要求建立不多于k个基站,在第i个村庄 ...

  4. HDU5669 Road 分层最短路+线段树建图

    分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) ​的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...

  5. bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树

    2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 145 ...

  6. 2018 UESTC 线段树专题

    A - 一棵简单的线段树 A[1...n]初始全为0. 1. 给两个数p 和 x(1≤p≤n),单点更新 A[p] <- x 2. 给两个数L和R (1≤L<R≤n),  L到R区间里这几 ...

  7. BZOJ.4825.[AHOI/HNOI2017]单旋(线段树)

    BZOJ LOJ 洛谷 这题不难啊,我怎么就那么傻,拿随便一个节点去模拟.. 我们只需要能够维护,将最小值或最大值转到根.模拟一下发现,对于最小值,它的右子树深度不变(如果存在),其余节点深度全部\( ...

  8. [线段树]picture

    PICTURE 题目描述 N(N<5000) 张矩形的海报,照片和其他同样形状的图片贴在墙上.它们的边都是垂直的或水平的.每个矩形可以部分或者全部覆盖其他矩形.所有的矩形组成的集合的轮廓称为周长 ...

  9. bzoj 2243: [SDOI2011]染色 (树链剖分+线段树 区间合并)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9854  Solved: 3725[Submit][Status ...

随机推荐

  1. 关于连接内部服务器以及redis缓存基本操作

    1.linux命令行远程连接内部服务器 ssh -p 6637 mndevops@172.18.11.183 //建立连接命令 端口号和用户名+ip 输入密码 ./redis-cli 进入redis数 ...

  2. 动手学Transformer

    动手实现Transformer,所有代码基于tensorflow2.0,配合illustrated-transformer更香. 模型架构 Encoder+Decoder Encoder Decode ...

  3. AJ学IOS 之控制器view显示中view的父子关系及controller的父子关系_解决屏幕旋转不能传递事件问题

    AJ分享,必须精品 一:效果 二:项目代码 这个Demo用的几个控制器分别画了不通的xib,随便拖拽了几个空间,主要是几个按钮的切换,主要代码展示下: // // NYViewController.m ...

  4. sublime text3配置html环境

    1.安装View in Browser 2.配置快捷键 [1]Preferences—Key Bindings—User. [2]插入代码 [ //ie { "keys": [&q ...

  5. 杭电 逃离迷宫 BFS

    给定一个m × n (m行, n列)的迷宫,迷宫中有两个位置,gloria想从迷宫的一个位置走到另外一个位置,当然迷宫中有些地方是空地,gloria可以穿越,有些地方是障碍,她必须绕行,从迷宫的一个位 ...

  6. 一道简单的SQL注入题

    这是我真正意义上来说做的第一道SQL题目,感觉从这个题目里还是能学到好多东西的,这里记录一下这个题目的writeup和在其中学到的东西 link:https://www.ichunqiu.com/ba ...

  7. 你自学半年也搞不懂的go底层,看这篇。这篇讲 go的数组、切片、Maps

    目录 数组 1.定义数组 2.使用数组 3.定义并赋值 4.数组的大小是类型的一部分 5.数组是值类型(当参数传递到函数中,修改不会改变原来的值) 6.数组长度 7.循环数组 8.多维数组 切片 1. ...

  8. PHP-fpm 远程代码执行漏洞(CVE-2019-11043)复现

    简介 9 月 26 日,PHP 官方发布漏洞通告,其中指出:使用 Nginx + php-fpm 的服务器,在部分配置下,存在远程代码执行漏洞.并且该配置已被广泛使用,危害较大. 漏洞概述 Nginx ...

  9. 解决IE升级后必须以管理员运行的问题

    很多网友可能都遇到过这样的问题,在ie升级后,无法打开,必须以管理员身份运行.今天我也遇到了这个问题.最终找到了解决办法. 1.Win + R 2.输入 regedit,定位到 HKEY_CURREN ...

  10. kubernetes的cni0和flannel.1的关系?

    当容器运行之后,节点之间多了个虚拟接口cni0,它是由flanneld创建的一个虚拟网桥叫cni0,供pod本地通信使用.flanneld为每个pod创建一对veth虚拟设备,一端放在容器接口上,一端 ...