M - Little Pony and Harmony Chest

怎么感觉自己越来越傻了,都知道状态的定义了还没有推出转移方程。

首先这个a的范围是0~30   这里可以推出 b数组的范围 0~60

原因很简单,因为这个要求abs(b-a)) 尽量小,所以如果b>=60 那还不如用1 ,因为1 的数量是没有限制的,

当 b>60 abs(b-a)>30 所以相比 b>60 b==1 更优。

然后我们对质数进行状压,为什么要对质数进行状压呢,因为质数两两互质,而且每一个数都是由若干个质数组成。

所以我们可以用质数来对状态进行筛选。

因为b的范围是从1到58(如果要选59,则也可以选1),所以我们要打个表,来表示他是由哪些素数组成的。

为什么要这样呢,因为这样可以就可以快速判断出之前的状态是不是和这个有冲突(就是有没有相同的质数)

知道这些就差不多了,这个题目利用状压位运算来判断一个两两之间有没有公约数,方法很巧妙。

具体:

dp[i][s] 表示到第 i 个位置,之前的状态为 s 的最小代价,

初始化 dp[0][0]=0,其他都是不合理的状态,所以初始化为inf

首先枚举位置,其次枚举状态,然后在枚举这个位置所有可能的数。

路径的输出就是记录这个状态的放的数,和这个状态之前的状态,一个是记录状态一个是记录数。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
typedef long long ll;
ll dp[][<<];
int is[][<<];
int pre[][<<];
int p[maxn], isp[maxn], m;
void init()
{
memset(p, , sizeof(p));
for (int i = ; i <= ; i++) p[i] = ;
for(int i=;i*i<=;i++)
{
if(p[i])
{
for(int j=i*i;j<=;j+=i)
{
p[j] = ;
}
}
}
m = ;
for(int i=;i<=;i++) if (p[i]) isp[++m] = i;
}
int sta[], a[];
vector<int>e;
int main()
{
int n; init();
scanf("%d", &n);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
if (i%isp[j] == ) sta[i] |= ( << (j - ));//sta 数组表示选i这个数的限制条件,这个要好好理解。
}
}
memset(pre, -, sizeof(pre));
memset(dp, inf64, sizeof(dp));
dp[][] = ;//这个dp定义的是到第i个位置,数的状态为s的代价,
//如果dp == inf 说明是不合理的状态,因为如果是在0这个位置,所以当没有数的状态就是合理的而且代价==0
for(int i=;i<n;i++)//这个从0 开始是因为每次第i个更新第i+1个
{
for(int j=;j<(<<);j++)
{
if (dp[i][j] == inf64) continue;
for(int k=;k<=;k++)
{
if (sta[k] & j) continue;
int tmp = sta[k] | j;
if (dp[i + ][tmp] > dp[i][j] + abs(a[i+] - k))
{
dp[i + ][tmp] = dp[i][j] + abs(a[i+] - k);
is[i + ][tmp] = k;
pre[i + ][tmp] = j;
}
}
}
}
int ans=inf, id=;
for(int i=;i<(<<);i++)
{
if(dp[n][i]<ans)
{
ans = dp[n][i];
id = i;
}
}
for(int i=n;i>=;i--)
{
e.push_back(is[i][id]);
id = pre[i][id];
}
for (int i = e.size() - ; i >= ; i--) printf("%d ", e[i]);
printf("\n");
return ;
}

状压dp

这个题目我现在做感觉不是很简单,之前已经写过一次了,今天又写了一次还是感觉有点迷糊。

明确dp的定义dp[s][i]表示状态为s 上一个节点是i的最小代价。

路径的输出就是记录这一个点这个状态选择的值,再记录上一个点的状态。

根据这个dp定义的状态可以知道要枚举状态和点,先枚举点再枚举每一个点可能的状态,

最后枚举这个点的所有可能性。

先枚举状态不是很好写。

M - Little Pony and Harmony Chest 状压dp的更多相关文章

  1. Codeforces Round #259 (Div. 2) D. Little Pony and Harmony Chest 状压DP

    D. Little Pony and Harmony Chest   Princess Twilight went to Celestia and Luna's old castle to resea ...

  2. CF453B Little Pony and Harmony Chest (状压DP)

    CF453B CF454D Codeforces Round #259 (Div. 2) D Codeforces Round #259 (Div. 1) B D. Little Pony and H ...

  3. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  4. codeforces 454 D. Little Pony and Harmony Chest(状压dp)

    题目链接:http://codeforces.com/contest/454/problem/D 题意:给定一个序列a, 求一序列b,要求∑|ai−bi|最小.并且b中任意两数的最大公约数为1. 题解 ...

  5. [CF453B]Little Pony and Harmony Chest

    [CF453B]Little Pony and Harmony Chest 题目大意: 给你一个长度为\(n(n\le100)\)的正整数序列\(A(A_i\le30)\),求一个正整数序列\(B\) ...

  6. Codeforces 454D - Little Pony and Harmony Chest

    454D - Little Pony and Harmony Chest 思路: 状压dp,由于1的时候肯定满足题意,而ai最大是30,所以只要大于等于59都可以用1替换,所以答案在1到59之间 然后 ...

  7. CF 435B Little Pony and Harmony Chest

    Little Pony and Harmony Chest 题解: 因为 1 <= ai <= 30 所以  1 <= bi <= 58, 因为 59 和 1 等效, 所以不需 ...

  8. Codeforces 4538 (状态压缩dp)Little Pony and Harmony Chest

    Little Pony and Harmony Chest 经典状态压缩dp #include <cstdio> #include <cstring> #include < ...

  9. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

随机推荐

  1. web.xml配置参数context-param和init-param的区别

    web.xml配置参数context-param和init-param的区别 (2009-04-13 10:29:01) 转载▼ 标签: 杂谈 分类: JavaEE web.xml里面可以定义两种参数 ...

  2. 最长公共子窜和最长公共子序列(LCS)

    他们都是用dp做;复杂度都是O(N方) 有一个大佬的博客写的很详细,是关于最长公共子序列的:https://blog.csdn.net/hrn1216/article/details/51534607 ...

  3. Pytorch自定义创建BP神经网络

    class BPNet(nn.Module): def __init__(self, in_dim, n_hidden_1, n_hidden_2,\ n_hidden_3, n_hidden_4, ...

  4. 通过String的不变性案例分析Java变量的可变性

    阅读本文之前,请先看以下几个问题: 1.String变量是什么不变?final修饰变量时的不变性指的又是什么不变,是引用?还是内存地址?还是值? 2.java对象进行重赋值或者改变属性时在内存中是如何 ...

  5. Docker-Bridge Network 03 自定义网络

    本节介绍自定义bridge network的自定义网络. 1.前言2.创建自定义网络2.1 创建网络2.2 指定网段创建网络3.创建容器3.1 指定网络创建容器3.2 指定IP创建容器4.通信4.1 ...

  6. Crossing River POJ过河问题

    A group of N people wishes to go across a river with only one boat, which can at most carry two pers ...

  7. 详解 final 和 static

    在我们上一篇博文中提到了 fianl 这个关键字,对于这个关键字,本人在初学时也耗费了极大地心血,甚至和师兄进行了激烈的讨论,并且,在我们讨论.尝试 以及 翻阅各种资料,最终得出了合适.易懂的解释. ...

  8. 简谈” Top K“

    Top K 快速选择和堆排序都可以求解 Kth Element 和 TopK Elements 问题. 题见215. Kth Largest Element in an Array (Medium) ...

  9. php下载各种编辑器输出的内容到word中展示

    <?php/** * Created by PhpStorm. * User: 工作 * Date: 2018/1/11 * Time: 12:02 */ //连接数据库$dsn = " ...

  10. DEDE中自定义表单HTML 怎么写

    用DEDE嵌套网站时,有时我们需要添加自定义字段,而自定义字段的HTML样式如何设置呢? 功能地图(核心/频道模型/内容模型管理/)——普通文章的修改——字段管理——你的自定义字段的修改——最下面自定 ...