题意:判断两个多边形是否有面积大于0的公共部分

思路:扫描线基础。

#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<" ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ const double eps = 1e-10;/** 设置比较精度 **/
struct Real {
double x;
double get() { return x; }
Real(const double &x) { this->x = x; }
Real() {} Real operator + (const Real &that) const { return Real(x + that.x);}
Real operator - (const Real &that) const { return Real(x - that.x);}
Real operator * (const Real &that) const { return Real(x * that.x);}
Real operator / (const Real &that) const { return Real(x / that.x);} Real operator += (const Real &that) { return Real(x += that.x); }
Real operator -= (const Real &that) { return Real(x -= that.x); }
Real operator *= (const Real &that) { return Real(x *= that.x); }
Real operator /= (const Real &that) { return Real(x /= that.x); } bool operator < (const Real &that) const { return x - that.x <= -eps; }
bool operator > (const Real &that) const { return x - that.x >= eps; }
bool operator == (const Real &that) const { return x - that.x > -eps && x - that.x < eps; }
bool operator <= (const Real &that) const { return x - that.x < eps; }
bool operator >= (const Real &that) const { return x - that.x > -eps; }
}; struct Point {
Real x, y;
int read() { return scanf("%lf%lf", &x.x, &y.x); }
Point(const Real &x, const Real &y) { this->x = x; this->y = y; }
Point() {}
Point operator + (const Point &that) const { return Point(this->x + that.x, this->y + that.y); }
Point operator - (const Point &that) const { return Point(this->x - that.x, this->y - that.y); }
Real operator * (const Point &that) const { return x * that.x + y * that.y; }
Point operator * (const Real &that) const { return Point(x * that, y * that); }
Point operator += (const Point &that) { return Point(this->x += that.x, this->y += that.y); }
Point operator -= (const Point &that) { return Point(this->x -= that.x, this->y -= that.y); }
Point operator *= (const Real &that) { return Point(x *= that, y *= that); }
Real cross(const Point &that) const { return x * that.y - y * that.x; }
};
typedef Point Vector; struct Segment {
Point a, b;
Segment(const Point &a, const Point &b) { this->a = a; this->b = b; }
Segment() {}
bool intersect(const Segment &that) const {
Point c = that.a, d = that.b;
Vector ab = b - a, cd = d - c, ac = c - a, ad = d - a, ca = a - c, cb = b - c;
return ab.cross(ac) * ab.cross(ad) < && cd.cross(ca) * cd.cross(cb) < ;
}
Point getLineIntersection(const Segment &that) const {
Vector u = a - that.a, v = b - a, w = that.b - that.a;
Real t = w.cross(u) / v.cross(w);
return a + v * t;
}
}; Point p1[], p2[];
Segment side1[], side2[]; bool cmp(const pair<Segment, int> &a, const pair<Segment, int> &b) {
return a.X.a.x + a.X.b.x < b.X.a.x + b.X.b.x;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int n, m, cas = ;
while (cin >> n) {
for (int i = ; i < n; i ++) {
p1[i].read();
if (i) side1[i - ] = Segment(p1[i - ], p1[i]);
}
side1[n - ] = Segment(p1[n - ], p1[]);
cin >> m;
for (int i = ; i < m; i ++) {
p2[i].read();
if (i) side2[i - ] = Segment(p2[i - ], p2[i]);
}
side2[m - ] = Segment(p2[m - ], p2[]);
/** 得到所有的扫描线并排序去重 **/
vector<Real> Y;
for (int i = ; i < n; i ++) Y.pb(p1[i].y);
for (int i = ; i < m; i ++) Y.pb(p2[i].y);
for (int i = ; i < n; i ++) {
for (int j = ; j < m; j ++) {
if (side1[i].intersect(side2[j])) {
Y.pb(side1[i].getLineIntersection(side2[j]).y);
}
}
}
sort(all(Y));
Y.resize(unique(all(Y)) - Y.begin());
//Debug::print("Y.size=", Y.size());
Real area = ;
for (int i = ; i < Y.size(); i ++) {
vector<pair<Segment, int> > V;
/** 得到扫描线之间的所有线段 **/
for (int j = ; j < n; j ++) {
Real miny = side1[j].a.y, maxy = side1[j].b.y;
if (miny > maxy) swap(miny, maxy);
if (miny <= Y[i - ] && maxy >= Y[i]) {
Point dot1 = side1[j].getLineIntersection(Segment(Point(, Y[i - ]), Point(, Y[i - ])));
Point dot2 = side1[j].getLineIntersection(Segment(Point(, Y[i]), Point(, Y[i])));
V.pb(mp(Segment(dot1, dot2), ));
}
}
for (int j = ; j < m; j ++) {
Real miny = side2[j].a.y, maxy = side2[j].b.y;
if (miny > maxy) swap(miny, maxy);
if (miny <= Y[i - ] && maxy >= Y[i]) {
Point dot1 = side2[j].getLineIntersection(Segment(Point(, Y[i - ]), Point(, Y[i - ])));
Point dot2 = side2[j].getLineIntersection(Segment(Point(, Y[i]), Point(, Y[i])));
V.pb(mp(Segment(dot1, dot2), ));
}
}
sort(all(V), cmp);
//Debug::print("V.size=", V.size());
/** 从左至右统计 **/
bool in1 = , in2 = ;/** 当前延伸的区域是否在多边形内部 **/
for (int i = ; i < V.size(); i ++) {
if (in1 && in2) area += V[i].X.a.x - V[i - ].X.a.x + V[i].X.b.x - V[i - ].X.b.x;
if (V[i].Y) in2 ^= ;
else in1 ^= ;
}
}
printf("Case %d: %s\n", ++ cas, area > ? "Yes" : "No");
}
return ;
}

[UVA Live 12931 Common Area]扫描线的更多相关文章

  1. UVA 10405 Longest Common Subsequence

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=16&p ...

  2. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  3. UVA 10405 Longest Common Subsequence --经典DP

    最长公共子序列,经典问题.算是我的DP开场题吧. dp[i][j]表示到s1的i位置,s2的j位置为止,前面最长公共子序列的长度. 状态转移: dp[i][j] = 0                 ...

  4. [UVa OJ] Longest Common Subsequence

    This is the classic LCS problem. Since it only requires you to print the maximum length, the code ca ...

  5. UVA 10522 Height to Area(知三角形三高求面积)

    思路:海伦公式, AC代码: #include<bits/stdc++.h> using namespace std; int main() { int n; scanf("%d ...

  6. 【uva 12219】Common Subexpression Elimination(图论--树+自定义比较器+映射+递归)

    题意:如题,用表达式树来表示一个表达式,且消除公共的部分,即用编号表示.编号 K 定义为表达式第 K 个出现的字符串. 解法:先构造表达式树,给每棵子树用(string,left_son,right_ ...

  7. hdu---(Tell me the area)(几何/三角形面积以及圆面积的一些知识)

    Tell me the area Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. HDU 1798 Tell me the area

    http://acm.hdu.edu.cn/showproblem.php?pid=1798 Problem Description     There are two circles in the ...

  9. HDU 1798 Tell me the area (数学)

    题目链接 Problem Description     There are two circles in the plane (shown in the below picture), there ...

随机推荐

  1. 基础_TCP/IP

    概念明确: 1:TCP/IP代表传输控制协议/网际协议,指的是一系列协议  为什么会叫TCP/IP.因为用的多, 2:HTTP 是属于应用层的协议 3:OSI七层模型和TCP/IP 平等,只是TCP/ ...

  2. mybatis一级缓存让我憔悴

    Mybatis对缓存提供支持,是默认开启一级缓存. 来一段代码,这边使用的是mybatis-plus框架,通过构建 QueryWrapper 查询类来实现的. @Transactional publi ...

  3. notepad++批量每行加字符

    移动光标到头 选择正则 输入^ 下面输入需要加的文本. 点替换

  4. 前端学习笔记-JavaScript

    js引入方式: 1.嵌入js的方式:直接在页内的script标签内书写js功能代码. <script type="text/javascript">alert('hel ...

  5. 开始appium的第一个脚本

    设置DesiredCapabilities 存在于以下库中: org.openqa.selenium.remote.DesiredCapabilities Desired Capabilities告诉 ...

  6. Java实现链表(个人理解链表的小例子)

    1.单链表和数组的区别 数组:数组的存储空间是连续的,需要事先申请空间确定大小,通过下标查找数据,所以查找速度快,但是增加和删除速度慢 链表:离散存储,不需要事先确定大小,通过头指针加遍历查找数据,查 ...

  7. React Hooks: useCallback理解

    useCallback把匿名回调“存”起来 避免在component render时候声明匿名方法,因为这些匿名方法会被反复重新声明而无法被多次利用,然后容易造成component反复不必要的渲染. ...

  8. 深入理解kestrel的应用

    1 前言 之所以写本文章,是因为在我停止维护多年前写的NetworkSocket组件两年多来,还是有一些开发者在关注这个项目,我希望有类似需求的开发者明白为什么要停止更新,可以使用什么更好的方式来替换 ...

  9. pytorch torchversion标准化数据

     新旧标准差的关系

  10. NER命名实体识别,实体级level的评估,精确率、召回率和F1值

    pre = "0 0 B_SONG I_SONG I_SONG 0 B_SONG I_SONG I_SONG 0 0 B_SINGER I_SINGER I_SINGER 0 O O O B ...