看了网上一堆解释,有用相互交换来解释的,我看了半天也看不出所以然来。心想着自己试验一下。

  numpy.transpose的用法很简单:假如你有一个四维的数组,那么四个维度就是0,1,2,3。风格会像下面这样:

>>>A = np.ones((1, 32, 30, 3))
>>>A.shape
(1, 30, 32, 3)
>>>A.transpose(0,3,1,2)

  如你所见,transpose是ndarray的类方法,输入是四个维度的排列,那么这四个维度的排列一定蕴含着交换维度的“规则”。有两个可能(合理)的想法:

  1. 以上面这个例子来说,0, 3, 1, 2分别是第 1, 2, 3, 4 个位置参数。那么transpose的作用就是将原本的第 1, 2, 3, 4维替换到所给的位置,即:原来的第0维调换到0号位置即第0维,原来的第1维调换到3号位置即第3维,所以结果应该是 shape_after = (1, 32, 3, 30)。但是事实并不是如此,why?这不,还有第二种可能的解释

  2. 原来不是有四个维度吗,分别有标记,即0, 1, 2, 3维,那么我们对维度进行调换的过程不就是对这个标签排序的过程吗?那么(0,3,1,2)的意思就是以这样的顺序:第0维,第3维,第1维,第2维的顺序来组成一个新的数组,所以结果应该是 shape_after = (1, 3, 30, 32)。运行之后正好是这样~~

>>>A = np.ones((1, 32, 30, 3))
>>>A.shape
(1, 30, 32, 3)
>>>A.transpose(0,3,1,2).shape
(1, 3, 30, 32)

  再举个栗子:

>>>A = np.array([[[1,2],[3,4]],[[4,5],[6,7]]])
>>>A
array([[[1, 2],
[3, 4]], [[4, 5],
[6, 7]]])
>>>A.transpose(0,2,1)
array([[[1, 3],
[2, 4]], [[4, 6],
[5, 7]]])

  按上面的理论来解释,第一维不动,后两维交换。结果发现两个2×2的矩阵都被转置,而它们好好的并在一起。这不就是我们期待的效果吗?

  总结一下:一个数组原先是有第0,1,2...维的。transpose做的事情就是让这些维度“排个序”,从而达到交换维度的目的。你可能会觉得它与reshape很像,但是其实区别蛮大。reshape是改变了numpy数组元素的“解释”方式,而transpose则显式修改了数据的相对位置,这也是为什么它的英文和“矩阵”转置是一样的原因。

numpy中transpose的功能的更多相关文章

  1. Python Numpy中transpose()函数的使用

    在Numpy对矩阵的转置中,我们可以用transpose()函数来处理. 这个函数的运行是非常反常理的,可能会令人陷入思维误区. 假设有这样那个一个三维数组(2*4*2): array ([[[ 0, ...

  2. numpy中transpose和swapaxes函数讲解

    1 transpose() 这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数. 我们看如下一个numpy的数组: arr=np.arange(16).reshape( ...

  3. numpy中的np.round()取整的功能和注意

    numpy中的np.round()取整的功能和注意 功能 np.round() 是对浮点数取整的一个函数,一般的形式为 np.round(a, b),其中a为待取整的浮点数,b为保留的小数点的位数 注 ...

  4. Python数据分析--Numpy常用函数介绍(6)--Numpy中矩阵和通用函数

    在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat . matrix 以及 bmat 函数来创建矩阵. 一.创建矩阵 mat 函数创 ...

  5. numpy中的广播

    目录 广播的引出 广播的原则 数组维度不同,后缘维度的轴长相符 数组维度相同,其中有个轴为1 参考: 广播的引出  numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import num ...

  6. Python numpy中矩阵的用法总结

    关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...

  7. numpy中的ndarray方法和属性

    原文地址 NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是 ...

  8. numpy中min函数

    numpy提供的数组功能比较常用,NumPy中维数被称为轴,轴数称为秩. import numpy as np 比如a = np.array([[1, 5, 3], [4, 2, 6]]) a.min ...

  9. Numpy中扁平化函数ravel()和flatten()的区别

    在Numpy中经常使用到的操作由扁平化操作,Numpy提供了两个函数进行此操作,他们的功能相同,但在内存上有很大的不同. 先来看这两个函数的使用: from numpy import * a = ar ...

随机推荐

  1. C# 数据操作系列 - 15 SqlSugar 增删改查详解

    0. 前言 继上一篇,以及上上篇,我们对SqlSugar有了一个大概的认识,但是这并不完美,因为那些都是理论知识,无法描述我们工程开发中实际情况.而这一篇,将带领小伙伴们一起试着写一个能在工程中使用的 ...

  2. shiro认证通过之后的授权

    subject.hasRole("") ; subject.hasRoles(List); subject.hasAllRoles(); subject.isPermitted(& ...

  3. 来自AI的Tips——情景智能

    来自AI的Tips--情景智能   上一次我们介绍了华为快服务智慧平台是什么,今天我们来侃一侃平台最有代表性的一个流量入口--情景智能(AI Tips).   首先情景智能在哪呢?大家可以拿出自己的华 ...

  4. 第7章 PCA与梯度上升法

    主成分分析法:主要作用是降维 疑似右侧比较好? 第三种降维方式: 问题:????? 方差:描述样本整体分布的疏密的指标,方差越大,样本之间越稀疏:越小,越密集 第一步: 总结: 问题:????怎样使其 ...

  5. 写给程序员的机器学习入门 (五) - 递归模型 RNN,LSTM 与 GRU

    递归模型的应用场景 在前面的文章中我们看到的多层线性模型能处理的输入数量是固定的,如果一个模型能接收两个输入那么你就不能给它传一个或者三个.而有时候我们需要根据数量不一定的输入来预测输出,例如文本就是 ...

  6. Eclipse中java文件选中变量名,相同变量都变色显示 .

    第一步设置高亮显示的颜色: Window-->preferences-->General-->Editors-->Text Editors-->Annotations-- ...

  7. centos7 docker安装mongo遇到的问题

    问题一 docker search error 描述:使用docker 搜索镜像时出现错误,错误信息如下: [root@ ~]# docker search mongo Error response ...

  8. 使用css实现loading的加载

    使用css实现loading的加载的效果图 html代码 <div id="caseVerteClaire"> <div id="transform&q ...

  9. Rocket - devices - CanHaveBuiltInDevices

    https://mp.weixin.qq.com/s/C9iktVr4hnQ8lM0CiWtedQ 简单介绍CanHaveBuiltInDevices的实现. 1. HasBuiltInDeviceP ...

  10. DevOps - 从渐进式交付说起(含实践 Demo)

    作者:CODING - 王炜 1. 开篇 如果让你主导一款千万.甚至亿级用户产品的功能迭代,你会怎么做?你需要面对的挑战可能来自于: 商业战略的变化带来新的产品诉求,而产品的任何改动哪怕仅是界面调整, ...