题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列。要求经过的整数之和最小。第一行的上一行是最后一行,最后一行的下一行是第一行。输出路径上每列的行号。多解时输出字典序最小的。

分析:

1、dp[i][j]---从第i行第j列到最后一列的最小开销。

2、列从右到左,从后一个状态可推知前一个状态的开销。

#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 100 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int a[20][MAXN];
int dp[20][MAXN];
int path[20][MAXN];//当前位置的下一列所对应行数
int main(){
int m, n;
while(scanf("%d%d", &m, &n) == 2){
memset(dp, INT_INF, sizeof dp);
memset(path, 0, sizeof path);
for(int i = 1; i <= m; ++i){
for(int j = 1; j <= n; ++j){
scanf("%d", &a[i][j]);
}
}
for(int i = 1; i <= m; ++i) dp[i][n] = a[i][n];
for(int j = n - 1; j >= 1; --j){
for(int i = 1; i <= m; ++i){
int tmp[] = {i - 1, i, i + 1};
if(i == 1) tmp[0] = m;
if(i == m) tmp[2] = 1;
sort(tmp, tmp + 3);
for(int k = 0; k < 3; ++k){
int &cur = tmp[k];
if(a[i][j] + dp[cur][j + 1] < dp[i][j]){//保证字典序最小
dp[i][j] = a[i][j] + dp[cur][j + 1];
path[i][j] = cur;
}
}
}
}
int ans = INT_INF;
int st = 0;
for(int i = 1; i <= m; ++i){
if(dp[i][1] < ans){
ans = dp[i][1];
st = i;//第一列行数
}
}
printf("%d", st);
for(int j = 2; j <= n; ++j){
printf(" %d", path[st][j - 1]);
st = path[st][j - 1];
}
printf("\n");
printf("%d\n", ans);
}
return 0;
}

  

UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)的更多相关文章

  1. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  2. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  3. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  4. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  7. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  8. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

  9. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

随机推荐

  1. H.264 SODB RBSP EBSP的区别

    SODB(String of Data Bits,数据比特串): 最原始,未经过处理的编码数据 RBSP(Raw Byte Sequence Payload,原始字节序列载荷): 在SODB的后面填加 ...

  2. 关于MySQL连接Navicat Premium 12失败的解决方法

    出现问题的原因:MySQL8.0之后更换了加密方式,而这种加密方式客户端不支持 解决:更改加密方式 ALTER USER 'root'@'localhost' IDENTIFIED WITH mysq ...

  3. Python递归函数如何写?正确的Python递归函数用法!

    在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.一.举个例子,我们来计算阶乘n! = 1 x 2 x 3 x … x n,用函数fact(n)表示,可以看出:fac ...

  4. Python format语法

    a = {"name" : "alex","age":16} v = "my name is {name}, my age is ...

  5. 在线关闭 CLOSE_WAIT状态TCP连接

    1.查看某个端口的所有TCP连接: [root@Centos projects]# netstat -anp | tcp6 ::: :::* LISTEN /java tcp6 CLOSE_WAIT ...

  6. ubuntu18.04下neo4j的安装

    参考CSDN博客 安装jdk8方式与博客中有不同,按照博客中方法没有成功 以下方法配置环境变量成功 进入配置文件 [root@cuierdan java]# vim /etc/profile在文件的后 ...

  7. Linux-lsxxx

    Linux-lsxxx ls list directory contents 列出文件及目录 lsattr List file attributes on a Linux second extende ...

  8. 文本情感分析(二):基于word2vec、glove和fasttext词向量的文本表示

    上一篇博客用词袋模型,包括词频矩阵.Tf-Idf矩阵.LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题. 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用 ...

  9. GoJS实例3

    复制如下内容保存到空白的.html文件中,用浏览器打开即可查看效果 <!DOCTYPE html> <html> <head> <meta charset=& ...

  10. swing开发图形界面工具配置(可自由拖控件上去)

    swing开发图形界面工具,eclipse swing图形化操作界面工具配置 1.有一个小功能要有一个界面,之前知道有一个 图形化界面的(就是可以往上面拖控件布局的工具)JBuilder,今天上午就下 ...