题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列。要求经过的整数之和最小。第一行的上一行是最后一行,最后一行的下一行是第一行。输出路径上每列的行号。多解时输出字典序最小的。

分析:

1、dp[i][j]---从第i行第j列到最后一列的最小开销。

2、列从右到左,从后一个状态可推知前一个状态的开销。

#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 100 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int a[20][MAXN];
int dp[20][MAXN];
int path[20][MAXN];//当前位置的下一列所对应行数
int main(){
int m, n;
while(scanf("%d%d", &m, &n) == 2){
memset(dp, INT_INF, sizeof dp);
memset(path, 0, sizeof path);
for(int i = 1; i <= m; ++i){
for(int j = 1; j <= n; ++j){
scanf("%d", &a[i][j]);
}
}
for(int i = 1; i <= m; ++i) dp[i][n] = a[i][n];
for(int j = n - 1; j >= 1; --j){
for(int i = 1; i <= m; ++i){
int tmp[] = {i - 1, i, i + 1};
if(i == 1) tmp[0] = m;
if(i == m) tmp[2] = 1;
sort(tmp, tmp + 3);
for(int k = 0; k < 3; ++k){
int &cur = tmp[k];
if(a[i][j] + dp[cur][j + 1] < dp[i][j]){//保证字典序最小
dp[i][j] = a[i][j] + dp[cur][j + 1];
path[i][j] = cur;
}
}
}
}
int ans = INT_INF;
int st = 0;
for(int i = 1; i <= m; ++i){
if(dp[i][1] < ans){
ans = dp[i][1];
st = i;//第一列行数
}
}
printf("%d", st);
for(int j = 2; j <= n; ++j){
printf(" %d", path[st][j - 1]);
st = path[st][j - 1];
}
printf("\n");
printf("%d\n", ans);
}
return 0;
}

  

UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)的更多相关文章

  1. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  2. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  3. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  4. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  7. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  8. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

  9. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

随机推荐

  1. 在fragment中实现返回键单击提醒 双击退出

    最近在练习一个小项目,也就是郭霖大神的开源天气程序,尝试用mvp架构加dagger2来重写了一下,大致功能都实现了,还没有全部完成. 项目地址 接近完成的时候,想在天气信息页面实现一个很常见的功能,也 ...

  2. 【Linux】centos7下解决yum -y install mysql-server 没有可用包

    第一步:安装从网上下载文件的wget命令 [root@localhost ~]# yum -y install wget 第二步:下载mysql的repo源 [root@localhost ~]# w ...

  3. tomcat点击startup.bat出现闪退,启动不成功的解决办法

    问题描述:tomcat点击startup.bat出现命令行闪退的情况 打开startup.bat,在第一行加入 SET JAVA_HOME=D:\jdk\jdk1.8.0_121[jdk路径] SET ...

  4. centos8 安装mysql 8.0

    本文参照:https://blog.csdn.net/qq_43232506/article/details/102816659 •  安装mysql及依赖 dnf install @mysql • ...

  5. Metasploit学习笔记——强大的Meterpreter

    1. Meterpreter命令详解 1.1基本命令 使用Adobe阅读器渗透攻击实战案例打开的Meterpreter会话实验,靶机是WinXP.由于所有命令与书中显示一致,截图将书中命令记录下来. ...

  6. Myeclipse 安装时候android adt, android sdk常见问题

    离线版adt安装  可以随意百度adt下载 安装时候注意断网模式,否则会连接到服务器耗费很长时间:如果安装报错,可能是adt与Myeclipse版本不匹配,如我用的是Myeclipse8.6,安装AD ...

  7. L/SQL Developer 和 instantclient客户端安装配置

    PL/SQL Developer 和 instantclient客户端安装配置(图文) 一: PL/SQL Developer 安装 下载安装文件安装,我这里的版本号是PLSQL7.1.4.1391, ...

  8. 用sql删除数据库重复的数据的方法

      /***********************************************两个意义上的重复记录:1.是完全重复的记录,也即所有字段均重复的记录,2.是部分关键字段重复的记录, ...

  9. 【pwnable.tw】 alive_note

    突然发现已经两个月没写过WP了,愧疚- -... 此题也算一道分数很高的题目,主要考察Shellcode的编写. 又是一道题目逻辑很简单的题. 首先提供了三个函数 查看,删除,添加 查看函数: 此函数 ...

  10. springboot自动配置

    1.spring-boot-autoconfigure-2.1.7.BUILD-SNAPSHOT-sources.jar 2.如何查看项目中启动和未启动的自动配置: application.prope ...