link:TJOI2015 弦论

题目大意:

给定一个字符串,输出在对该字符串所有的非空子串排序后第\(k\)个

另外的一个限制是\(T\):子串本质相同但位置不同算\(1\)或多个

\(|s| \leq 5 \times 10^5\)

Solution

“子串排序”,而且数据比较大的时候就要想到后缀自动机了

这个过程有点点像我们在写Treap的时候(就是lyd的书上的代码吧,蒟蒻只学过那一个)

第一步构造一下,套个板子就行

接下来我们先看一下我们的输出代码:

	inline void print(int x,int l)
{
if(l<=val[x]) return ;
l-=val[x];
for(int i=0;i<26;++i)
{
int r=p[x].ch[i]; if(!r) continue;
if(l>sum[r]){l-=sum[r]; continue;}
putchar(i+'a'); print(r,l); return ;
}
}

\(x\)是当前是哪个节点,\(l\)就是还剩下多少的排位

\(val[]\)就是“本质相同串”,有点点类似我们在\(Treap\)上的每一个节点的\(size\)

\(sum[]\)就是子树大小

和\(treap\)找\(rank\)太像了(反正我觉得是)

然后我们的工作就转化成了维护\(sum[]\)的\(val[]\)

看看这段维护代码,一点一点说吧(如果是有学习需要的访客,请跳过这段代码解释,可能有锅)

		for(int i=1;i<=tot;++i) t[len(i)]++;
for(int i=1;i<=tot;++i) t[i]+=t[i-1];
for(int i=1;i<=tot;++i) a[t[len(i)]--]=i;
//上文都是自动机上的操作
//下文就是大力统计“和”
for(int i=tot;i>=1;--i) val[fa(a[i])]+=val[a[i]];
for(int i=1;i<=tot;++i) cas==0?(sum[i]=val[i]=1):(sum[i]=val[i]);
val[1]=sum[1]=0;
for(int i=tot;i>=1;--i)
{
for(int j=0;j<26;++j)
{
if(p[a[i]].ch[j]) sum[a[i]]+=sum[p[a[i]].ch[j]];
}
}

其实到这里我认为是可理解的(博主理解了)

CODE

#include<bits/stdc++.h>
using namespace std;
#define int long long
namespace yspm{
inline int read()
{
int res=0,f=1;char k;
while(!isdigit(k=getchar())) if(k=='-') f=-1;
while(isdigit(k)) res=res*10+k-'0',k=getchar();
return res*f;
}
const int N=2e6+10;
char s[N];
struct node{
int fa,len,ch[26];
#define fa(x) p[x].fa
#define len(x) p[x].len
}p[N];
int t[N],a[N],sum[N],k,las=1,tot=1,len,cas,val[N];
inline void addp(int x)
{
int tmp=las,np=las=++tot; val[tot]=1; p[np].len=p[tmp].len+1;
for(;tmp&&!p[tmp].ch[x];tmp=p[tmp].fa) p[tmp].ch[x]=np;
if(!tmp) p[np].fa=1;
else
{
int q=p[tmp].ch[x];
if(p[q].len==p[tmp].len+1) p[np].fa=q;
else
{
int nq=++tot;
p[nq]=p[q]; p[nq].len=p[tmp].len+1;
p[q].fa=p[np].fa=nq;
for(;tmp&&p[tmp].ch[x]==q;tmp=p[tmp].fa) p[tmp].ch[x]=nq;
}
} return ;
}
inline void print(int x,int l)
{
if(l<=val[x]) return ;
l-=val[x];
for(int i=0;i<26;++i)
{
int r=p[x].ch[i]; if(!r) continue;
if(l>sum[r]){l-=sum[r]; continue;}
putchar(i+'a'); print(r,l); return ;
}
}
signed main()
{
scanf("%s",s+1); cas=read(); k=read(); len=strlen(s+1);
for(int i=1;i<=len;++i) addp(s[i]-'a');
for(int i=1;i<=tot;++i) t[len(i)]++;
for(int i=1;i<=tot;++i) t[i]+=t[i-1];
for(int i=1;i<=tot;++i) a[t[len(i)]--]=i;
for(int i=tot;i>=1;--i) val[fa(a[i])]+=val[a[i]];
for(int i=1;i<=tot;++i) cas==0?(sum[i]=val[i]=1):(sum[i]=val[i]);
val[1]=sum[1]=0;
for(int i=tot;i>=1;--i)
{
for(int j=0;j<26;++j)
{
if(p[a[i]].ch[j]) sum[a[i]]+=sum[p[a[i]].ch[j]];
}
}
if(sum[1]<k) puts("-1");
else print(1,k),puts("");
return 0;
}
}signed main(){return yspm::main();}

LGOJ3975 TJOI2015 弦论的更多相关文章

  1. BZOJ 3998: [TJOI2015]弦论 [后缀自动机 DP]

    3998: [TJOI2015]弦论 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2152  Solved: 716[Submit][Status] ...

  2. Luogu P3975 [TJOI2015]弦论

    题目链接 \(Click\) \(Here\) 题目大意: 重复子串不算的第\(k\)大子串 重复子串计入的第\(k\)大子串 写法:后缀自动机. 和\(OI\) \(Wiki\)上介绍的写法不太一样 ...

  3. 洛谷 P3975 [TJOI2015]弦论 解题报告

    P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...

  4. 【BZOJ 3998】 3998: [TJOI2015]弦论 (SAM )

    3998: [TJOI2015]弦论 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2627  Solved: 881 Description 对于一 ...

  5. 【BZOJ3998】[TJOI2015]弦论 后缀自动机

    [BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...

  6. BZOJ_3998_[TJOI2015]弦论_后缀自动机

    BZOJ_3998_[TJOI2015]弦论_后缀自动机 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行 ...

  7. bzoj3998: [TJOI2015]弦论(SAM+dfs)

    3998: [TJOI2015]弦论 题目:传送门 题解: SAM的入门题目(很好的复习了SAM并加强Right集合的使用) 其实对于第K小的字符串直接从root开始一通DFS就好,因为son边是直接 ...

  8. luogu P3975 [TJOI2015]弦论 SAM

    luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...

  9. 题解-TJOI2015 弦论

    TJOI2015 弦论 字符串 \(s\) 和 \(t\) 和 \(k\).如果 \(t=0\),不同位置的相同子串算 \(1\) 个:如果 \(t=1\),不同位置的相同子串算多个.求 \(k\) ...

随机推荐

  1. Sequence Models Week 1 Character level language model - Dinosaurus land

    Character level language model - Dinosaurus land Welcome to Dinosaurus Island! 65 million years ago, ...

  2. GPLT L3-021 神坛

    在古老的迈瑞城,巍然屹立着 n 块神石.长老们商议,选取 3 块神石围成一个神坛.因为神坛的能量强度与它的面积成反比,因此神坛的面积越小越好.特殊地,如果有两块神石坐标相同,或者三块神石共线,神坛的面 ...

  3. Python Learning Day4

    ---恢复内容开始--- 遇到的模块 NumPy:多维数组的有效操作. 高效的数学函数. Matplotlib:可视化:2D和(最近)3D图 SciPy:大型库实现各种数值算法,例如: 线性和非线性方 ...

  4. Java web实现综合查询+SQL语句拼接

    首先展示图形界: 界面比较简单,但麻雀虽小五脏俱全.因为数据库只有六种数据类型,所以最多添加六个查询框. 测试以下问题: 删除方式是从上往下开始的,如果删除之后会有问题.(后续改进ing) 若干个并且 ...

  5. .NET core ABP 获取远程IP地址

    2.asp.net core 2.x上配置 第一步:在控制器中定义变量 private IHttpContextAccessor _accessor; 第二步: 控制器的构造函数进行注入 public ...

  6. 吴裕雄--天生自然 JAVASCRIPT开发学习:prototype(原型对象)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. 学习Unet的一些过程

    毕业设计的项目,需要用到手机作为控制端,这就需要用到Unity的网络模块. 因为只会设计到几个简单的按钮命令,所以不打算做多么复杂的功能,一开始打算用C#的Socket编程,但是考虑到多线程的关系觉得 ...

  8. 计蒜客 引爆炸弹(DFS、并查集)

    在一个 n×m 的方格地图上,某些方格上放置着炸弹.手动引爆一个炸弹以后,炸弹会把炸弹所在的行和列上的所有炸弹引爆,被引爆的炸弹又能引爆其他炸弹,这样连锁下去. 现在为了引爆地图上的所有炸弹,需要手动 ...

  9. NGINX常用模块(二)

    5.Nginx日志配置 Nginx有非常灵活的日志记录模式.每个级别的配置可以有各自独立的访问日志.日志格式 通过log_format命令定义格式 1.log_format指令 # 配置语法:包括:e ...

  10. ZJNU 1426 - YNingC的困惑

    注意到N最大只有1e6,但是xy最大有2e8,直接模拟2e8会超时 所以可以将1e6个区间离散化后模拟,模拟时的最坏情况为2e6满足题意 /* Written By StelaYuri */ #inc ...