Sunday算法:字符串匹配算法进阶
背景
我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是\(Ω(m*n)\),也就是达到了字符串匹配效率的下限。于是后来人经过研究,构造出了著名的KMP算法(Knuth-Morris-Pratt算法),让我们的时间复杂度降低到了\(O(m+n)\),但现代文字处理器中,却很少使用KMP算法来做字符串匹配,因为还是太慢了。现在主流的算法是BM算法(Boyer-Moore算法),成功让平均时间复杂度降低到了\(O(m/n)\),而Sunday算法,则是对BM算法的进一步小幅优化。
KMP算法很多人看了一遍遍以后,对next[n]
数组的理解还是有点困难(包括笔者),写代码的时候总是容易变成这种情况(/捂脸.jpg):
(切到网页):马冬梅
(切到编译器):马什么梅
(切到网页):马冬梅
(切到编译器):马冬什么
(切到网页):马冬梅
(切到编译器):什么冬梅
而Sunday算法,理解起来则是非常容易,同时极低的时间复杂度,让Sunday算法成为了我目前最常使用的字符串匹配算法
Sunday 算法是 Daniel M.Sunday 于 1990 年提出的字符串模式匹配。其效率在匹配随机的字符串时比其他匹配算法还要更快。Sunday 算法的实现可比 KMP,BM 的实现容易太多。
平均性能的时间复杂度为\(O(n)\);
最差情况的时间复杂度为\(O(n * m)\)。
算法过程
Sunday算法和BM算法稍有不同的是,Sunday算法是从前往后匹配,在匹配失败时关注的是主串中参加匹配的最末位字符的下一位字符。
- 如果该字符没有在模式串中出现则直接跳过,即移动位数 = 模式串长度 + 1;
- 否则,其移动位数 = 模式串长度 - 该字符最右出现的位置(以0开始) = 模式串中该字符最右出现的位置到尾部的距离 + 1。
现在举个例子讲解Sunday算法
假定主串为 "HERE IS A SIMPLE EXAMPLE",模式串为 "EXAMPLE"。
(1)
从头部开始比较,发现不匹配。则 Sunday 算法要求如下:找到主串中位于模式串后面的第一个字符,即红色箭头所指的 "空格",再在模式串中从后往前找 "空格",没有找到,则直接把模式串移到 "空格" 的后面。
(2)
依旧从头部开始比较,发现不匹配。找到主串中位于模式串后面的第一个字符 L,模式串中存在 L,则移动模式串使两个 L 对齐。
(3)
找到匹配。
完整代码
#include <iostream>
#include <string>
#define MAX_CHAR 256
#define MAX_LENGTH 1000
using namespace std;
void GetNext(string & p, int & m, int next[])
{
for (int i = 0; i < MAX_CHAR; i++)
next[i] = -1;
for (int i = 0; i < m; i++)
next[p[i]] = i;
}
void Sunday(string & s, int & n, string & p, int & m)
{
int next[MAX_CHAR];
GetNext(p, m, next);
int j; // s 的下标
int k; // p 的下标
int i = 0;
bool is_find = false;
while (i <= n - m)
{
j = i;
k = 0;
while (j < n && k < m && s[j] == p[k])
j++, k++;
if (k == m)
{
cout << "在主串下标 " << i << " 处找到匹配\n";
is_find = true;
}
if (i + m < n)
i += (m - next[s[i + m]]);
else
break;
}
if (!is_find)
cout << "未找到匹配\n";
}
int main()
{
string s, p;
int n, m;
while (cin >> s >> p)
{
n = s.size();
m = p.size();
Sunday(s, n, p, m);
cout << endl;
}
return 0;
}
数据测试如下:
here#is#a#example
example
在主串下标 10 处找到匹配
aaa
a
在主串下标 0 处找到匹配
在主串下标 1 处找到匹配
在主串下标 2 处找到匹配
aaa
b
未找到匹配
Sunday算法:字符串匹配算法进阶的更多相关文章
- BM算法和Sunday快速字符串匹配算法
BM算法研究了很久了,说实话BM算法的资料还是比较少的,之前找了个资料看了,还是觉得有点生涩难懂,找了篇更好的和算法更好的,总算是把BM算法搞懂了. 1977年,Robert S.Boyer和J St ...
- 【原创】通俗易懂的讲解KMP算法(字符串匹配算法)及代码实现
一.本文简介 本文的目的是简单明了的讲解KMP算法的思想及实现过程. 网上的文章的确有些杂乱,有的过浅,有的太深,希望本文对初学者是非常友好的. 其实KMP算法有一些改良版,这些是在理解KMP核心思想 ...
- 字符串匹配算法之Sunday算法
字符串匹配查找算法中,最着名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).两个算法在最坏情况下均具有线性的查找时间.但是在实用上,KMP算法并不比最简 ...
- 字符串匹配算法:Sunday算法
背景 我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是\(Ω(m*n)\),也就是达到了字符串匹配效率的下限.于是后来人经过研究,构造出了著名的KMP算法 ...
- 动画演示Sunday字符串匹配算法——比KMP算法快七倍!极易理解!
前言 上一篇我用动画的方式向大家详细说明了KMP算法(没看过的同学可以回去看看). 这次我依旧采用动画的方式向大家介绍另一个你用一次就会爱上的字符串匹配算法:Sunday算法,希望能收获你的点赞关注收 ...
- 字符串匹配算法之Sunday算法(转)
字符串匹配算法之Sunday算法 背景 我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是Ω(m*n),也就是达到了字符串匹配效率的下限.于是后来人经过研究 ...
- Sunday字符串匹配算法
逛ACM神犇的博客的时候看到的这个神奇的算法 KMP吧,失配函数难理解,代码量长 BF吧,慢,很慢,特别慢. BM吧,我不会写... 现在看到了Sunday算法呀,眼前一亮,神清气爽啊. 字符串匹配算 ...
- 字符串匹配算法——BF、KMP、Sunday
一:Brute force 从源串的第一个字符开始扫描,逐一与模式串的对应字符进行匹配,若该组字符匹配,则检测下一组字符,如遇失配,则退回到源串的第二个字符,重复上述步骤,直到整个模式串在源串中找到匹 ...
- Sunday 字符串匹配算法(C++实现)
简介: Sunday算法是Daniel M.Sunday于1990年提出的一种字符串模式匹配算法.其核心思想是:在匹配过程中,模式串并不被要求一定要按从左向右进行比较还是从右向左进行比较,它在发现不匹 ...
随机推荐
- CentOS之crontab
1.crontab介绍 功能说明:设置计时器. 语 法:crontab [-u <用户名称>][配置文件] 或 crontab [-u <用户名称>][-elr] 补充说明:c ...
- Python爬虫利器 cURL你用过吗?
hello,小伙伴们,今天给大家分享的开源项目是一个python爬虫利器,感兴趣的小伙伴看完这篇文章不妨去尝试一下,这个开源项目就是curlconverter,不知道小伙伴们分析完整个网站后去code ...
- Linux C++ 网络编程学习系列(5)——多路IO之epoll边沿触发
多路IO之epoll边沿触发+非阻塞 源码地址:https://github.com/whuwzp/linuxc/tree/master/epoll_ET_LT_NOBLOCK_example 源码说 ...
- JVM崩溃的原因及解决!
JVM崩溃的原因及解决! 前些天,搞JNI的时候,报了个JVM崩溃的错.错误信息如下: # # An unexpected error has been detected by HotSpot Vir ...
- 关于TOMCAT中的两个Web.xml
关于TOMCAT中的两个Web.xml (2013-01-19 17:32:57) 转载▼ 标签: 杂谈 初学JAVA web开发.. Servlet定义的时候,我发现在${catalina.ho ...
- Win8.1/Win10在某些程序输入中文变成问号的解决方法
之前我是使用Win8.1,在某些软件上输入中文,却显示问号,换输入法也没用,当时也没用太在意,后来升级到Win10还是一样.同样的软件在其它Win8.1/Win10电脑却可以正常显示中文. 解决方法如 ...
- java nio消息半包、粘包解决方案
问题背景 NIO是面向缓冲区进行通信的,不是面向流的.我们都知道,既然是缓冲区,那它一定存在一个固定大小.这样一来通常会遇到两个问题: 消息粘包:当缓冲区足够大,由于网络不稳定种种原因,可能会有多条消 ...
- GitHub 热点速览 Vol.16:化身蒙娜丽莎和乔布斯对话
摘要:妙趣横生,上周的 GitHub 热点的关键词.无论是让你化身为爱因斯坦开启会议脑暴模式 avatarify,还是和上周人人都是抠图师项目的同门项目 3D 照片修复:3d-photo-inpain ...
- App 开发中判断 ios 和 andriod 常用方法便于修复在两类机型样式不一样等缺陷
判断安卓, ios
- JSON Extractor(JSON提取器)
JSON提取器 Variable names(名称):提取器的名称Apply to(应用范围):Main sample and sub-samples:应用于主sample及子sampleMain s ...