背景

我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是\(Ω(m*n)\),也就是达到了字符串匹配效率的下限。于是后来人经过研究,构造出了著名的KMP算法(Knuth-Morris-Pratt算法),让我们的时间复杂度降低到了\(O(m+n)\),但现代文字处理器中,却很少使用KMP算法来做字符串匹配,因为还是太慢了。现在主流的算法是BM算法(Boyer-Moore算法),成功让平均时间复杂度降低到了\(O(m/n)\),而Sunday算法,则是对BM算法的进一步小幅优化。

KMP算法很多人看了一遍遍以后,对next[n]数组的理解还是有点困难(包括笔者),写代码的时候总是容易变成这种情况(/捂脸.jpg):

(切到网页):马冬梅

(切到编译器):马什么梅

(切到网页):马冬梅

(切到编译器):马冬什么

(切到网页):马冬梅

(切到编译器):什么冬梅

而Sunday算法,理解起来则是非常容易,同时极低的时间复杂度,让Sunday算法成为了我目前最常使用的字符串匹配算法

Sunday 算法是 Daniel M.Sunday 于 1990 年提出的字符串模式匹配。其效率在匹配随机的字符串时比其他匹配算法还要更快。Sunday 算法的实现可比 KMP,BM 的实现容易太多。

平均性能的时间复杂度为\(O(n)\);

最差情况的时间复杂度为\(O(n * m)\)。

算法过程

Sunday算法和BM算法稍有不同的是,Sunday算法是从前往后匹配,在匹配失败时关注的是主串中参加匹配的最末位字符的下一位字符。

  • 如果该字符没有在模式串中出现则直接跳过,即移动位数 = 模式串长度 + 1;
  • 否则,其移动位数 = 模式串长度 - 该字符最右出现的位置(以0开始) = 模式串中该字符最右出现的位置到尾部的距离 + 1。

现在举个例子讲解Sunday算法

假定主串为 "HERE IS A SIMPLE EXAMPLE",模式串为 "EXAMPLE"。

(1)

从头部开始比较,发现不匹配。则 Sunday 算法要求如下:找到主串中位于模式串后面的第一个字符,即红色箭头所指的 "空格",再在模式串中从后往前找 "空格",没有找到,则直接把模式串移到 "空格" 的后面。

(2)

依旧从头部开始比较,发现不匹配。找到主串中位于模式串后面的第一个字符 L,模式串中存在 L,则移动模式串使两个 L 对齐。

(3)

找到匹配。

完整代码

#include <iostream>
#include <string>

#define MAX_CHAR 256
#define MAX_LENGTH 1000

using namespace std;

void GetNext(string & p, int & m, int next[])
{
	for (int i = 0; i < MAX_CHAR; i++)
		next[i] = -1;
	for (int i = 0; i < m; i++)
		next[p[i]] = i;
}

void Sunday(string & s, int & n, string & p, int & m)
{
	int next[MAX_CHAR];
	GetNext(p, m, next);

	int j;  // s 的下标
	int k;  // p 的下标
	int i = 0;
	bool is_find = false;
	while (i <= n - m)
	{
		j = i;
		k = 0;
		while (j < n && k < m && s[j] == p[k])
			j++, k++;

		if (k == m)
		{
			cout << "在主串下标 " << i << " 处找到匹配\n";
			is_find = true;
		}

		if (i + m < n)
			i += (m - next[s[i + m]]);
		else
			break;
	}

	if (!is_find)
		cout << "未找到匹配\n";
}

int main()
{
	string s, p;
	int n, m;

	while (cin >> s >> p)
	{
		n = s.size();
		m = p.size();
		Sunday(s, n, p, m);
		cout << endl;
	}

	return 0;
}

数据测试如下:

here#is#a#example
example
在主串下标 10 处找到匹配

aaa
a
在主串下标 0 处找到匹配
在主串下标 1 处找到匹配
在主串下标 2 处找到匹配

aaa
b
未找到匹配

附小吴师兄的动画讲解链接

Sunday算法:字符串匹配算法进阶的更多相关文章

  1. BM算法和Sunday快速字符串匹配算法

    BM算法研究了很久了,说实话BM算法的资料还是比较少的,之前找了个资料看了,还是觉得有点生涩难懂,找了篇更好的和算法更好的,总算是把BM算法搞懂了. 1977年,Robert S.Boyer和J St ...

  2. 【原创】通俗易懂的讲解KMP算法(字符串匹配算法)及代码实现

    一.本文简介 本文的目的是简单明了的讲解KMP算法的思想及实现过程. 网上的文章的确有些杂乱,有的过浅,有的太深,希望本文对初学者是非常友好的. 其实KMP算法有一些改良版,这些是在理解KMP核心思想 ...

  3. 字符串匹配算法之Sunday算法

    字符串匹配查找算法中,最着名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).两个算法在最坏情况下均具有线性的查找时间.但是在实用上,KMP算法并不比最简 ...

  4. 字符串匹配算法:Sunday算法

    背景 我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是\(Ω(m*n)\),也就是达到了字符串匹配效率的下限.于是后来人经过研究,构造出了著名的KMP算法 ...

  5. 动画演示Sunday字符串匹配算法——比KMP算法快七倍!极易理解!

    前言 上一篇我用动画的方式向大家详细说明了KMP算法(没看过的同学可以回去看看). 这次我依旧采用动画的方式向大家介绍另一个你用一次就会爱上的字符串匹配算法:Sunday算法,希望能收获你的点赞关注收 ...

  6. 字符串匹配算法之Sunday算法(转)

    字符串匹配算法之Sunday算法 背景 我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是Ω(m*n),也就是达到了字符串匹配效率的下限.于是后来人经过研究 ...

  7. Sunday字符串匹配算法

    逛ACM神犇的博客的时候看到的这个神奇的算法 KMP吧,失配函数难理解,代码量长 BF吧,慢,很慢,特别慢. BM吧,我不会写... 现在看到了Sunday算法呀,眼前一亮,神清气爽啊. 字符串匹配算 ...

  8. 字符串匹配算法——BF、KMP、Sunday

    一:Brute force 从源串的第一个字符开始扫描,逐一与模式串的对应字符进行匹配,若该组字符匹配,则检测下一组字符,如遇失配,则退回到源串的第二个字符,重复上述步骤,直到整个模式串在源串中找到匹 ...

  9. Sunday 字符串匹配算法(C++实现)

    简介: Sunday算法是Daniel M.Sunday于1990年提出的一种字符串模式匹配算法.其核心思想是:在匹配过程中,模式串并不被要求一定要按从左向右进行比较还是从右向左进行比较,它在发现不匹 ...

随机推荐

  1. hadoop(八)集群namenode启动ssh免密登录(完全分布式五)|10

    前置章节:hadoop集群配置同步(hadoop完全分布式四)|10 启动namenode之前: 1. 先查看有无节点启动,执行jps查看,有的话停掉 [shaozhiqi@hadoop102 ~]$ ...

  2. PHP远程代码执行漏洞复现(CVE-2019-11043)

    漏洞描述 CVE-2019-11043 是一个远程代码执行漏洞,使用某些特定配置的 Nginx + PHP-FPM 的服务器存在漏洞,可允许攻击者远程执行代码. 向Nginx + PHP-FPM的服务 ...

  3. Android Them+SharedPreferences 修改程序所有view字体颜色、大小和页面背景

    有这么一个需求,可以对页面的样式进行选择,然后根据选择改变程序所有字体颜色和页面背景.同时下一次启动程序,当前设置依然有效. 根据需求,我们需要一种快速,方便,有效的方式来实现需求,然后可以通过And ...

  4. 如何假装黑客,使用python去批量破解朋友的网站密码

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...

  5. jdk动态代理:由浅入深理解mybatis底层

    什么是代理 代理模式,目的就是为其他对象提供一个代理以控制对某个对象的访问,代理类为被代理者处理过滤消息,说白了就是对被代理者的方法进行增强. 看到这里,有没有感觉很熟悉?AOP,我们熟知的面向切面编 ...

  6. 详解 Collection集合

    (请关注 本人"集合总集篇"博文--<详解 集合框架>) 首先,本人来讲解下 Collection集合的继承体系: Collection集合 的继承体系: Collec ...

  7. leetcode-0101 对称二叉树

    题目地址 https://leetcode-cn.com/problems/symmetric-tree/ 1.递归 本题最简单的思路是递归,可以假设两棵一模一样的树在进行镜像对比.他们之间的关系满足 ...

  8. MySQL笔记总结-其他

    数据库相关概念 一.数据库的好处 1.可以持久化数据到本地 2.结构化查询 二.数据库的常见概念 ★ 1.DB:数据库,存储数据的容器 2.DBMS:数据库管理系统,又称为数据库软件或数据库产品,用于 ...

  9. [Asp.Net Core] Blazor Server Side 项目实践 - 切换页面时保留状态

    前言: 这是 项目实践系列 , 算是中高级系列博文, 用于为项目开发过程中不好解决的问题提出解决方案的. 不属于入门级系列. 解释起来也比较跳跃, 只讲重点. 因为有网友的项目需求, 所以提前把这些解 ...

  10. Flutter Weekly Issue 53

    插件 left-scroll-actions A useful left scroll actions widget like WeChat.一款仿微信效果的 Flutter 左滑菜单插件.现在支持i ...