P3807【模板】卢卡斯定理
题解大部分都是递归实现的,给出一种非递归的形式
话说上课老师讲的时候没给代码,然后自己些就写成了这样
对于质数\(p\)给出卢卡斯定理:
\]
其实它还有另一种形式,虽然本质上没啥区别:
\]
其中,\(a,b\)分别为\(n,m\)的\(p\)进制下的每一位,\(k\)是它们位数的较大值,当然如果有数不足\(k\)位,要补前导0
来证明一下
其实证明方法也是看了别人blog才知道的
设\(s=\lfloor \dfrac{n}{p}\rfloor,t=\lfloor \dfrac{m}{p}\rfloor\)
则有\(q,w\)使得\(n=sp+q,m=tp+w\)
再考虑一个二项式:
\]
先由费马小定理推个结论:
\]
\]
所以:
\]
把这个结论带进去:
\]
再由二项式定理把右边展开
\]
同样我们可以把左边展开:
\]
然后我们可以发现,左右两遍都有\(x^{tp+w}\)次项(当然,这是在\(m\leq n\)的情形下,如果\(m>n\)结果就是0,不用考虑了)
比较一下它们的系数
左边:\(\tbinom{sp+q}{tp+w}x^{tp+w}\)
右边:\(\tbinom{s}{t}x^{tp}\cdot \tbinom{q}{w}x^w\)
这边要说明一下,不会出现别的次数组合,比如\((t-1)p\)和\((w+p)\),因为\(w,q<p\)
所以:\(\tbinom{sp+q}{tp+w}\equiv \tbinom{s}{t}\tbinom{q}{w}\pmod p\)
即:
\]
然后把\(\tbinom{\lfloor \frac{n}{p}\rfloor}{\lfloor \frac{m}{p} \rfloor}\)这一项不断展开,其实就变为了那种非递归形式
好了,我们终于得到了这个定理
那写代码就简单了,将\(n,m\)转化为\(p\)进制
预处理出阶乘数组,和阶乘的逆元数组
然后对于这\(p\)进制的每一位直接套组合数公式就行了
然而代码似乎没有递归的好写
另外一共5个点,我错了三遍下载了三个数据来调
那么说一下踩得坑,首先主函数for循环里的特判一定要有,避免出现数组下标变成负数,或者使用0的逆元的情况
还有多测时前导0的位置一定要清零
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<stack>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n,m,p;
LL fac[200006],g[200006];
int a[100006],b[100006];
inline LL power(LL x,LL y){
reg LL ans=1;
while(y){
if(y&1) ans=(1ll*ans*x)%p;
y>>=1;x=(x*x*1ll)%p;
}
return ans;
}
std::stack<int>s;
inline void pre(){//预处理函数
a[0]=b[0]=0;
while(n){
s.push(n%p);n/=p;
}
while(!s.empty()) a[++a[0]]=s.top(),s.pop();
int tmp=0;
while(m){
tmp++;
s.push(m%p);m/=p;
}
while(b[0]+tmp<a[0]) b[++b[0]]=0;//前导零的位置一定要清零
while(!s.empty()) b[++b[0]]=s.top(),s.pop();
fac[0]=1;
for(reg int i=1;i<p;i++) fac[i]=(1ll*fac[i-1]*i)%p;
g[p-1]=power(fac[p-1],p-2);
for(reg int i=p-2;i;i--) g[i]=(1ll*g[i+1]*(i+1))%p;
}
int main(){int t=read();while(t--){
n=read();m=read();p=read();
n+=m;m=n-m;
// std::memset(a,0,sizeof a);std::memset(b,0,sizeof b);
pre();
// for(reg int i=1;i<=a[0];i++) std::printf("%d ",a[i]);EN;
// for(reg int i=1;i<=b[0];i++) std::printf("%d ",b[i]);EN;
// for(reg int i=0;i<p;i++) std::printf("%d ",fac[i]);EN;
// for(reg int i=0;i<p;i++) std::printf("%d ",g[i]);EN;
LL ans=1;
// std::printf("%d %d\n",a[0],b[0]);
for(reg int i=1;i<=a[0];i++){
if(!b[i]) continue;
if(a[i]<b[i]){ans=0;break;}
if(a[i]==b[i]) continue;
ans=(1ll*ans*fac[a[i]])%p;
ans=(1ll*ans*g[b[i]])%p;
ans=(1ll*ans*g[a[i]-b[i]])%p;
}
std::printf("%lld\n",ans);
}
return 0;
}
P3807【模板】卢卡斯定理的更多相关文章
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- 887. 求组合数 III(模板 卢卡斯定理)
a,b都非常大,但是p较小 前边两种方法都会超时的 N^2 和NlongN 可以用卢卡斯定理 P*longN*longP 定义: 代码: import java.util.Scanner ...
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) ) 错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱 ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
随机推荐
- ThinkPHP3.1.2 使用cli命令行模式运行
ThinkPHP3.1.2 使用cli命令行模式运行 标签(空格分隔): php 前言 thinkphp3.1.2 需要使用cli方法运行脚本 折腾了一天才搞定 3.1.2的版本真的很古老 解决 增加 ...
- C语言 文件操作(五)
(1)size_t fread ( void * ptr, size_t size, size_t count, FILE * stream ); 其中,ptr:指向保存结果的指针:size:每个数据 ...
- Dubbo 路由机制的实现
Dubbo 路由机制是在服务间的调用时,通过将服务提供者按照设定的路由规则来决定调用哪一个具体的服务. 路由服务结构 Dubbo 实现路由都是通过实现 RouterFactory 接口.当前版本 du ...
- 7.3 java 成员变量和局部变量区别
/* * 成员变量和局部变量的区别: * A:在类中的位置不同 * 成员变量:类中,方法外 * 局部变量:方法中或者方法声明上(形式参数) * B:在内存中的位置不同 * 成员变量:堆内存 * 局部变 ...
- Python操作rabbitmq系列(四):根据类型订阅消息
在上一章中,所有的接收端获取的所有的消息.这一章,我们将讨论,一些消息,仍然发送给所有接收端.其中,某个接收端,只对其中某些消息感兴趣,它只想接收这一部分消息.如下图:C1,只对error感兴趣,C2 ...
- python3 进程间通信之socket.socketpair()
python3 进程间通信之socket.socketpair() socket.socketpair()是什么鬼东西? socket.socketpair()函数仅返回两个已经连接的套接字对象,参数 ...
- Kubernetes 二进制部署
目录 1.基础环境 2.部署DNS 3.准备自签证书 4.部署Docker环境 5.私有仓库Harbor部署 6.部署Master节点 6.1.部署Etcd集群 6.2.部署kube-apiserve ...
- 在VS Code下配置Julia
原来尝试用Sublime text3配置Julia,但是老是会出一些问题,所以直接在VS code下配置了 1.下载Julia 2.安装,安装过程和其他得软件安装一样,可以改变安装路径 3.安装完成后 ...
- 串匹配问题 (KMP算法) 详解
串这个概念对于我们学到现在的水平来说应该是经历颇丰了,因为在C语言中我们所用到的"串"知识是在字符串那里,有了这个概念,我们再去学习串就相对而言轻松多了. 那么,现在来介绍一下字符 ...
- centos7 —— 网络连接问题
今天用虚拟机(VM)安装好centos7后,发现无法连接网络,百思不得其解: 第一步:找到需要修改的文件位置,查明原因 #.查看网络是否可以ping通 ~ ping www.baidu.com #.查 ...