P1466 集合 Subset Sums 搜索+递推+背包三种做法
题目描述
对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:
{3} 和 {1,2}
这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:
{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。
输入输出格式
输入格式:
输入文件只有一行,且只有一个整数N
输出格式:
输出划分方案总数,如果不存在则输出0。
输入输出样例
输入样例#1:
7
输出样例#1:
4
说明
翻译来自NOCOW
USACO 2.2
先是搜索,已经确认了当大于28的时候就超时了,所以搜索算是一种方法,不过可以用搜索打表。然后是递推,搜索是不断地递归,所以通过搜索可以改写出递推来,但是会发现有点像背包,索性写个背包出来。
//DFS
#include<bits/stdc++.h>
using namespace std;
void dfs(int i,int su);
int sum;
int ans;
int n;
int main()
{
cin>>n;
ans=0;
sum=(1+n)*n>>1;
if((sum>>1)*2!=sum)
{
cout<<0<<endl;
return 0;
}
dfs(-1,0);
cout<<(ans>>1)<<endl;
}
void dfs(int i,int su)
{
for(int j=i+1; j<n; j++)
{
if(su+j+1>sum>>1)return ;
if(su+j+1==sum/2){
ans++;
return ;
}
dfs(j,su+j+1);
}
}
//递推
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
int sum=(n*(n+1))>>1;
if((sum>>1)<<1!=sum){cout<<0;return 0;}
long long a[(sum>>1)+1];
memset(a,0,sizeof(a));
a[0]=1;
for(int i=1;i<=n;i++)
for(int j=sum/2;j>=i;j--)
a[j]+=a[j-i];
printf("%d\n",a[sum>>1]>>1);
return 0;
}
// 背包
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int M=1e3+5;
LL b[M];
int n;
LL ans;
int main(){
scanf("%d",&n);
int sum=(n*(n+1))>>1;
if((sum>>1)<<1!=sum){cout<<0;return 0;}
for(int i=0;i<(1<<(n/2));++i){
int cur=0;
for(int j=0;(i>>j)>0;++j)if((i>>j)&1)cur+=(j+1);
b[cur]++;
}
for(int i=0;i<(1<<(n-n/2));++i){
int cur=0;
for(int j=0;(i>>j)>0;++j)if((i>>j)&1)cur+=j+n/2+1;
if((1+n)*n/4>=cur)
ans+=b[(1+n)*n/4-cur];
}
printf("%lld\n",ans>>1);
return 0;
}
P1466 集合 Subset Sums 搜索+递推+背包三种做法的更多相关文章
- DP | Luogu P1466 集合 Subset Sums
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- P1466 集合 Subset Sums(01背包求填充方案数)
题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...
- 洛谷 P1466 集合 Subset Sums Label:DP
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...
- [LUOGU] P1466 集合 Subset Sums
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...
- P2347 砝码称重(动态规划递推,背包,洛谷)
题目链接:P2347 砝码称重 参考题解:点击进入 纪念我第一道没理解题意的题 ''但不包括一个砝码也不用的情况'',这句话我看成了每个砝码起码放一个 然后就做不出来了 思路: 1.这题数据很小,10 ...
- [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...
- 【CF607B】Zuma——区间dp(记忆化搜索/递推)
以下是从中文翻译成人话的题面: 给定一个长度小于等于500的序列,每个数字代表一个颜色,每次可以消掉一个回文串,问最多消几次可以消完? (7.16) 这个题从洛谷pend回来以后显示有103个测试点( ...
- UVA11464 Even Parity 搜索+递推
问题描述 UVA11464 题解 第一直觉爆搜. 发现 \(N \le 15\) ,然后后面每行都可以通过第一行递推出来. 爆搜第一行,递推后面+check \(\mathrm{Code}\) #in ...
随机推荐
- flask 入门 之 Python Shell (二)
创建迁移仓库: 1.安装工具: pip install flask_migarte 2.代码: #encoding:utf-8 from flask_sqlalchemy import SQLAlch ...
- Powershell基础---帮助系统
帮助系统能带给我们什么? 1.快速找到命令,无需使用Bing或者Google 2.运行命令时候返回了错误信息,帮助系统可以告诉我们如何正确使用该命令 3.多个命令组合执行完成复杂的工作,帮助系统告诉我 ...
- C#多线程系列(2):多线程锁lock和Monitor
1,Lock lock 原型 lock 编写实例 2,Monitor 怎么用呢 解释一下 示例 设置获取锁的时效 C# 中,可以使用 lock 关键字和 Monitor 类来解决多线程锁定资源和死锁的 ...
- spring 中 hibernate 的 2种 配置方式(新旧 2种方式)
Spring对hibernate配置文件hibernate.cfg.xml的集成,来取代hibernate.cfg.xml的配置 Spring对hibernate配置文件hibernate.cfg.x ...
- 2019-07-31【机器学习】无监督学习之聚类 K-Means算法实例 (图像分割)
样本: 代码: import numpy as np import PIL.Image as image from sklearn.cluster import KMeans def loadData ...
- 安装JDK后,未设置Path,也能执行java.exe的原因
安装JDK时,自动将java.exe复制到C:\Windows\System32下
- idea创建springboot工程,总出现响应超时问题,或者无法连接http://start.spring.io导致创建失败
问题描述如下: idea创建springboot工程,总出现响应超时问题,或者无法连接http://start.spring.io导致创建失败 从我出现此类问题几次的解决方案 依照解决效率分为一下三种 ...
- Hadoop环境搭建(centos)
Hadoop环境搭建(centos) 本平台密码83953588abc 配置Java环境 下载JDK(本实验从/cgsrc 文件中复制到指定目录) mkdir /usr/local/java cp / ...
- Django文档阅读-Day1
Django文档阅读-Day1 Django at a glance Design your model from djano.db import models #数据库操作API位置 class R ...
- [PHP][thinkphp5] 学习一:增删改查
<?php namespace app\index\controller; use think\Controller; use think\Db; class Test extends Cont ...