「JSOI2014」打兔子

传送门

首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪。

但是我们又会发现当 \(n = 3, k = 2\) 时,这种情况也满足上述条件但是我们只能打掉两群兔子,所以选兔子最多的两个格子打。

对于剩下的情况我们可以考虑 \(\text{DP}\) 。

我们可以发现一件事,就是说如果我们把环弱化成链,那么顺着打就可以包含所有状态了。

所以说我们就可以有一个性质:两个相邻的格子不会被同时打。

然后我们就在链上先跑 \(\text{DP}\) :设 \(dp_{i, j, 0 / 1}\) 表示在前 \(i\) 个格子中开了 \(j\) 枪,第 \(i\) 个格子有没有开枪的最大收益。

转移就是:

  • 第 \(i+1\) 个格子不开 : \(dp_{i + 1, j, 0} \leftarrow \max\{dp_{i, j, 0}, dp_{i, j, 1}\}\)
  • 第 \(i\) 个格子不开,第 \(i + 1\)个格子开:\(dp_{i + 1, j + 1, 1} \leftarrow dp_{i, j, 0} + a_{i + 1}\)
  • 第 \(i\) 个格子开,第 \(i + 1\) 个格子不开,第 \(i + 2\) 个格子开:\(dp_{i + 2, j + 1, 1} \leftarrow dp_{i, j, 0} + a_{i + 1} + a_{i + 2}\)

然后对于环的问题,我们就讨论一下第 \(1\) 个格子和第 \(n\) 个格子的开枪情况即可。

参考代码:

#include <algorithm>
#include <cstring>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > void chkmax(T &a, const T& b) { a = a > b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} const int _ = 4010; int n, k, a[_], dp[_][_][2]; inline void DP() {
for (rg int i = 1; i < n; ++i)
for (rg int j = 0; j <= k; ++j) {
chkmax(dp[i + 1][j][0], max(dp[i][j][0], dp[i][j][1]));
if (j + 1 <= k) chkmax(dp[i + 1][j + 1][1], dp[i][j][0] + a[i + 1]);
if (j + 1 <= k && i + 2 <= n) chkmax(dp[i + 2][j + 1][1], dp[i][j][1] + a[i + 1] + a[i + 2]);
}
} inline int calc1() {
memset(dp, 0xaf, sizeof dp), dp[1][0][0] = 0;
DP();
return dp[n][k][0];
} inline int calc2() {
int tmp = a[n]; a[n - 1] += tmp, a[n] = 0;
memset(dp, 0xaf, sizeof dp), dp[1][1][1] = a[1], DP();
a[n] = tmp, a[n - 1] -= tmp;
return dp[n][k][0];
} int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(k);
for (rg int i = 1; i <= n; ++i) read(a[i]);
int ans = 0;
if (k >= (n + 1) / 2) {
if (n == 3 && k == 2)
sort(a + 1, a + n + 1), printf("%d\n", a[2] + a[3]);
else {
for (rg int i = 1; i <= n; ++i) ans += a[i];
printf("%d\n", ans);
}
return 0;
}
chkmax(ans, calc1());
chkmax(ans, calc2());
reverse(a + 1, a + n + 1);
chkmax(ans, calc2());
printf("%d\n", ans);
return 0;
}

「JSOI2014」打兔子的更多相关文章

  1. 「JSOI2014」矩形并

    「JSOI2014」矩形并 传送门 我们首先考虑怎么算这个期望比较好. 我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来 ...

  2. 「JSOI2014」电信网络

    「JSOI2014」电信网络 传送门 一个点选了就必须选若干个点,最大化点权之和,显然最大权闭合子图问题. 一个点向它范围内所有点连边,直接跑最大权闭合子图即可. 参考代码: #include < ...

  3. 「JSOI2014」学生选课

    「JSOI2014」学生选课 传送门 看到这题首先可以二分. 考虑对于当前的 \(mid\) 如何 \(\text{check}\) 我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) ...

  4. 「JSOI2014」歌剧表演

    「JSOI2014」歌剧表演 传送门 没想到吧我半夜切的 这道题应该算是 \(\text{JSOI2014}\) 里面比较简单的吧... 考虑用集合关系来表示分辨关系,具体地说就是我们把所有演员分成若 ...

  5. 「JSOI2014」支线剧情2

    「JSOI2014」支线剧情2 传送门 不难发现原图是一个以 \(1\) 为根的有根树,所以我们考虑树形 \(\text{DP}\). 设 \(f_i\) 表示暴力地走完以 \(i\) 为根的子树的最 ...

  6. 「JSOI2014」强连通图

    「JSOI2014」强连通图 传送门 第一问很显然就是最大的强连通分量的大小. 对于第二问,我们先把原图进行缩点,得到 \(\text{DAG}\) 后,统计出入度为零的点的个数和出度为零的点的个数, ...

  7. 「JSOI2014」序列维护

    「JSOI2014」序列维护 传送门 其实这题就是luogu的模板线段树2,之所以要发题解就是因为学到了一种比较NB的 \(\text{update}\) 的方式.(参见这题) 我们可以把修改操作统一 ...

  8. 「AHOI2014/JSOI2014」宅男计划

    「AHOI2014/JSOI2014」宅男计划 传送门 我们首先要发现一个性质:存货天数随买食物的次数的变化类似于单峰函数. 具体证明不会啊,好像是二分加三分来证明?但是没有找到明确的严格证明. 感性 ...

  9. 「AHOI2014/JSOI2014」拼图

    「AHOI2014/JSOI2014」拼图 传送门 看到 \(n \times m \le 10^5\) ,考虑根号分治. 对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \( ...

随机推荐

  1. 动态路由协议 RIP

    RIP:Routing Information Protocol.RFC1058. 距离矢量协议:有间隔的多少和方向.传递的是路由条目.每个路由器不知道网络的完整拓扑结构,OSPF知道. 度量值:每种 ...

  2. 解释查询和本地查询 区分 Enumerable 和 Queryable

    https://www.cnblogs.com/gosky/p/5757575.html 简单介绍:Enumerable 和 Queryable 他们都是静态类,位于命名控件 System.Linq下 ...

  3. javaWeb核心技术之分页和条件

    分页:limit ?,? 参数1 : startIndex 开始索引. 参数2 : pageSize 每页显示的个数 n 表示第几页 给定一个特殊的单词 pageNumber select * fro ...

  4. Nexus坑人系列-interface Unknown state L3 Not Ready

    这个情况也容易出现在新使用设备的时候,当设备上没有L3接口模块的时候,这个问题就出现了. 接下来,尤其是如果我们需要运行VPC(并且如果正在运行N5K,N7K等!),则需要在交换机上配置第3层接口. ...

  5. Docker - 创建第一个 docker 实例

    1. 概述 安装完准备开始使用 2. 环境 os centos 7 docker docker - ce 19.03 3. 步骤 启动docker > systemctl start docke ...

  6. 【音乐欣赏】《TIT FOR TAT》 - MYTH & ROID

    曲名:TIT FOR TAT 作者:MYTH & ROID [00:00.000] 作曲 : MYTH & ROID [00:01.000] 作词 : MYTH & ROID ...

  7. 数据库备份与还原:mysqldump,source

    *数据库备份* 1.备份方法一:适用于myslam表: 直接将tb_name.frm.tb_name.myd.tb_name.myi三个文件保存,备份即可. 需要的时候直接解压到,移动到相应的数据库目 ...

  8. 每天进步一点点------altium designer Summer09出现的问题解决方案

    在编译原理图时,引脚和连线旁边出现很多红线,提示 error:signal with no driver. 原理图没有加入到Project里. 第一次导入没问题,但是改了个元件的封装,在更新一下(De ...

  9. openresty-component

    1.Array Var Nginx Module ArrayVarNginxModulelocation /foo { array_split ',' $arg_files to=$array; # ...

  10. 【题解】Rusty String [CF827E]

    [题解]Rusty String [CF827E] 传送门:\(\text{Rusty String}\) \(\text{[CF827E]}\) [题目描述] 多组数据,每组数据给出一个由 \(V, ...