Description

There are nnn blocks arranged in a row and numbered from left to right, starting from one. Each block is either black or white.

You may perform the following operation zero or more times: choose two adjacent blocks and invert their colors (white block becomes black, and vice versa).

You want to find a sequence of operations, such that they make all the blocks having the same color. You don’t have to minimize the number of operations, but it should not exceed 3⋅n3⋅n3⋅n. If it is impossible to find such a sequence of operations, you need to report it.

Input

The first line contains one integer n(2≤n≤200)n(2≤n≤200)n(2≤n≤200) — the number of blocks.

The second line contains one string s consisting of n characters, each character is either “W” or “B”. If the i-th character is “W”, then the i-th block is white. If the i-th character is “B”, then the i-th block is black.

Output

If it is impossible to make all the blocks having the same color, print −1−1−1.

Otherwise, print an integer k(0≤k≤3⋅n)k(0≤k≤3⋅n)k(0≤k≤3⋅n) — the number of operations. Then print kkk integers p1,p2,…,pk(1≤pj≤n−1)p_1,p_2,…,p_k (1≤p_j≤n−1)p1​,p2​,…,pk​(1≤pj​≤n−1), where pjp_jpj​ is the position of the left block in the pair of blocks that should be affected by the jjj-th operation.

If there are multiple answers, print any of them.

题意

给定一串黑白文本,每次可以将其中相邻2个颜色翻转,求一个可行的操作序列使得操作后颜色相同。

如果不能找到输出-1

思路

一开始看到n<=200n<=200n<=200直接打了一发爆搜+记忆化,然后MLE炸到飞起……

正解是假定操作后全白,从头扫到尾一次,假定全黑,从头扫到尾一次,看看能否成功。

比如:我们要全白,而此时颜色是 黑白黑黑黑

可以将黑视作高台阶,白视作低台阶,然后一路推过去,最后能推平就可以了。



推平位置1后,往后找到位置2,推平位置2后,2 3都平了,再往后遍历找到位置4,推平位置4后,全部推平,合法。

因此操作序列就为:1 2 4

显然这样操作只会有2种结果:全平或者最后一个不平。

全黑全白两个都扫一遍就好了,复杂度O(n)O(n)O(n)

Code

#include <cstdio>
#include <cstring>
using namespace std;
int n,len;
char all[201];
char temp[201];
int path[201];
int tot;
bool checkblack()
{
memcpy(temp,all,sizeof(all));
tot = 0;
for(int i = 1;i<len;++i)
{
if(temp[i] == 'W')
{
temp[i] = 'B';
temp[i+1] = (temp[i+1] == 'W' ? 'B' : 'W');
path[++tot] = i;
}
}
return temp[len] == 'B';
}
bool checkwhite()
{
memcpy(temp,all,sizeof(all));
tot = 0;
for(int i = 1;i<len;++i)
{
if(temp[i] == 'B')
{
temp[i] = 'W';
temp[i+1] = (temp[i+1] == 'W' ? 'B' : 'W');
path[++tot] = i;
}
}
return temp[len] == 'W';
}
int main()
{
scanf("%d",&n);
scanf("%s",all+1);
len = strlen(all+1);
if(checkblack() || checkwhite())
{
printf("%d\n",tot);
for(int i =1 ;i<=tot;++i)
printf("%d ",path[i]);
}
else
printf("-1");
return 0;
}

[Codeforces #608 div2]1272B Blocks的更多相关文章

  1. [Codeforces #608 div2]1271D Portals

    Description You play a strategic video game (yeah, we ran out of good problem legends). In this game ...

  2. [Codeforces #608 div2]1271C Shawarma Tent

    Description The map of the capital of Berland can be viewed on the infinite coordinate plane. Each p ...

  3. [Codeforces #608 div2]1271A Suits

    Description A new delivery of clothing has arrived today to the clothing store. This delivery consis ...

  4. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  5. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  6. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  7. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  8. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  9. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

随机推荐

  1. Vacuum Pump Manufacturer - Vacuum Pump Range Use: Considerations

    The vacuum pump is a versatile bottle that holds your lotion, shampoo and conditioner. Keep away fro ...

  2. java8函数式编程实例

    什么是函数式编程 函数式编程是java8的一大特色,也就是将函数作为一个参数传递给指定方法.别人传的要么是基本数据类型,要么就是地址引用 ,我们要穿一个“动作”. Stream 说到函数式编程,就不得 ...

  3. gitlab的搭建与使用(一)

    yum install curl policycoreutils openssh-server openssh-clients postfix -y systemctl enable sshd sys ...

  4. PAT T1021 Safe Fruit

    暴力搜索加剪枝~ #include<bits/stdc++.h> using namespace std; ; const int inf=1e9; int g[maxn][maxn]; ...

  5. F: Horse Pro 马走棋盘 BFS

    F: Horse Pro 豆豆也已经开始学着玩象棋了,现在豆豆已经搞清楚马的走法了,但是豆豆不能确定能否在 100 步以内从一个点到达另一个点(假设棋盘无限大). Input 第一行输入两个整数 x1 ...

  6. Spring 中 bean 的生命周期?

    参考:https://www.cnblogs.com/kenshinobiy/p/4652008.html Spring Bean 生命周期如下: 1:Bean的建立: 容器寻找Bean的定义信息并将 ...

  7. spm_hrf

    a=spm_hrf(0.72); n1=MOTOR_taskdesign(1,:);cn1=conv(n1,a);plot(cn1); block design hrf

  8. Git远程分支代码强制回退&Tag添加

    Git指令大全:https://www.alexkras.com/getting-started-with-git/ Git提交错了,还是Master分支,哎呦喂咋整?请见下文.   [场景描述] 项 ...

  9. C/C++ - CallBack

    这是实验楼上一个callback debug例子,我没有提交结果,但在本地上运行没有任何问题,也无警告: #include <stdio.h> #define MAX 3 typedef ...

  10. Django 学习之中间件Middleware

    一.中间件介绍 中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好会影响 ...