Description

There are nnn blocks arranged in a row and numbered from left to right, starting from one. Each block is either black or white.

You may perform the following operation zero or more times: choose two adjacent blocks and invert their colors (white block becomes black, and vice versa).

You want to find a sequence of operations, such that they make all the blocks having the same color. You don’t have to minimize the number of operations, but it should not exceed 3⋅n3⋅n3⋅n. If it is impossible to find such a sequence of operations, you need to report it.

Input

The first line contains one integer n(2≤n≤200)n(2≤n≤200)n(2≤n≤200) — the number of blocks.

The second line contains one string s consisting of n characters, each character is either “W” or “B”. If the i-th character is “W”, then the i-th block is white. If the i-th character is “B”, then the i-th block is black.

Output

If it is impossible to make all the blocks having the same color, print −1−1−1.

Otherwise, print an integer k(0≤k≤3⋅n)k(0≤k≤3⋅n)k(0≤k≤3⋅n) — the number of operations. Then print kkk integers p1,p2,…,pk(1≤pj≤n−1)p_1,p_2,…,p_k (1≤p_j≤n−1)p1​,p2​,…,pk​(1≤pj​≤n−1), where pjp_jpj​ is the position of the left block in the pair of blocks that should be affected by the jjj-th operation.

If there are multiple answers, print any of them.

题意

给定一串黑白文本,每次可以将其中相邻2个颜色翻转,求一个可行的操作序列使得操作后颜色相同。

如果不能找到输出-1

思路

一开始看到n<=200n<=200n<=200直接打了一发爆搜+记忆化,然后MLE炸到飞起……

正解是假定操作后全白,从头扫到尾一次,假定全黑,从头扫到尾一次,看看能否成功。

比如:我们要全白,而此时颜色是 黑白黑黑黑

可以将黑视作高台阶,白视作低台阶,然后一路推过去,最后能推平就可以了。



推平位置1后,往后找到位置2,推平位置2后,2 3都平了,再往后遍历找到位置4,推平位置4后,全部推平,合法。

因此操作序列就为:1 2 4

显然这样操作只会有2种结果:全平或者最后一个不平。

全黑全白两个都扫一遍就好了,复杂度O(n)O(n)O(n)

Code

#include <cstdio>
#include <cstring>
using namespace std;
int n,len;
char all[201];
char temp[201];
int path[201];
int tot;
bool checkblack()
{
memcpy(temp,all,sizeof(all));
tot = 0;
for(int i = 1;i<len;++i)
{
if(temp[i] == 'W')
{
temp[i] = 'B';
temp[i+1] = (temp[i+1] == 'W' ? 'B' : 'W');
path[++tot] = i;
}
}
return temp[len] == 'B';
}
bool checkwhite()
{
memcpy(temp,all,sizeof(all));
tot = 0;
for(int i = 1;i<len;++i)
{
if(temp[i] == 'B')
{
temp[i] = 'W';
temp[i+1] = (temp[i+1] == 'W' ? 'B' : 'W');
path[++tot] = i;
}
}
return temp[len] == 'W';
}
int main()
{
scanf("%d",&n);
scanf("%s",all+1);
len = strlen(all+1);
if(checkblack() || checkwhite())
{
printf("%d\n",tot);
for(int i =1 ;i<=tot;++i)
printf("%d ",path[i]);
}
else
printf("-1");
return 0;
}

[Codeforces #608 div2]1272B Blocks的更多相关文章

  1. [Codeforces #608 div2]1271D Portals

    Description You play a strategic video game (yeah, we ran out of good problem legends). In this game ...

  2. [Codeforces #608 div2]1271C Shawarma Tent

    Description The map of the capital of Berland can be viewed on the infinite coordinate plane. Each p ...

  3. [Codeforces #608 div2]1271A Suits

    Description A new delivery of clothing has arrived today to the clothing store. This delivery consis ...

  4. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  5. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  6. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  7. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  8. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  9. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

随机推荐

  1. 在iOS项目中,这样才能完美的修改项目名称

    https://www.cnblogs.com/liangyi-cn/p/8657474.html 前言: 在iOS开发中,有时候想改一下项目的名字,这会遇到很多麻烦. 直接改项目名的话,Xcode不 ...

  2. 【转】PowerDesigner数据库视图同时显示Code和Name

    1.按顺序打开: Tools>>>Display Preference 2.依次点击 选中Code打钩,并点击箭头指向图标把Code置顶 3.最终效果图 原文链接

  3. C++ 知识零碎搭建

    全局变量 局部变量 函数不能嵌套定义 C/C++ 变量在将要被使用时定义即可, 不必一开始就声明所有变量 函数的定义与声明的区别 C++常规类型自动类型转换规则 C语言中十六进制和八进制的格式: 二进 ...

  4. Java基础 -4.4

    For循环 for循环也是一种常规的使用结构 public static void main(String[] args) { for(定义循环的初始值;循环判断;修改循环条件) { 循环语句的执行; ...

  5. Linux centosVMware NFS介绍、NFS服务端安装配置、NFS配置选项

    一.NFS介绍 NFS是Network File System的缩写 NFS最早由Sun公司开发,分2,3,4三个版本,2和3由Sun起草开发,4.0开始Netapp公司参与并主导开发,最新为4.1版 ...

  6. MongoDB基础篇2:数据库/用户/数据集合的增删改

    一.数据库操作 创建并进入数据库: 命令:use DATABASE_NAME 示例:use tms   查看所有数据库: 命令:show dbs   注意: (1)新创建的数据库在show dbs命令 ...

  7. php实现简单链式操作mysql数据库类

    <?php $dbConfig = require_once(dirname(__FILE__).'/config.php'); class Db{     public $conn;      ...

  8. Java日期时间API系列11-----Jdk8中java.time包中的新的日期时间API类,使用java8日期时间API重写农历LunarDate

    通过Java日期时间API系列7-----Jdk8中java.time包中的新的日期时间API类的优点,java8具有很多优点,现在网上查到的农历转换工具类都是基于jdk7及以前的类写的,下面使用ja ...

  9. JVM 学习笔记 - 带你掌握JVM类加载机制

    前言 往期JVM系列: 精美图文带你掌握 JVM 内存布局 本节主要内容: 类的生命周期 类加载阶段描述 数组类和非数组类在加载阶段的差别 父子类初始化顺序 接口的初始化 JVM如何处理 多线程同时初 ...

  10. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 按钮:禁用按钮

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...