数值计算方法实验之Lagrange 多项式插值 (Python 代码)
一、实验目的
在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点xi,处成立P(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≈P(x).
二、实验原理
三、实验内容
求之f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式.
四、实验程序
import matplotlib.pyplot as plt
from pylab import mpl #计算插值多项式的系数。
x = [0, 0.5, 1, 1.5, 2]
y = [0, 0.0625, 1, 5.0625, 16] def ParametersOfLagrangeInterpolation(data_x,data_y,size):
parameters=[] i=0;#i用来控制参数的个数
while i < size:
j = 0;#j用来控制循环的变量做累乘
temp = 1;
while j < size:
if(i != j):
temp*=data_x[i]-data_x[j]
j+=1;
parameters.append(data_y[i]/temp)
i += 1;
return parameters #计算拉格朗日插值公式的值。 def CalculateTheValueOfLarangeInterpolation(data_x,parameters,x):
returnValue=0
i = 0;
while i < len(parameters):
temp = 1
j = 0;
while j< len(parameters):
if(i!=j):
temp *=x-data_x[j]
j+=1
returnValue += temp * parameters[i]
i += 1
return returnValue #将函数绘制成图像
def Draw(data_x,data_y,new_data_x,new_data_y):
plt.plot(new_data_x, new_data_y, label="拟合曲线", color="red")
plt.scatter(data_x,data_y, label="离散数据",color="yellow")
plt.scatter(1.75, 9.37890625, label="真实数据", color="orange")
plt.scatter(1.25, 2.44140625, color="green")
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
plt.title("Lagrange插值拟合数据")
plt.legend(loc="upper left")
plt.show() parameters=ParametersOfLagrangeInterpolation(x,y,5)
datax=[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2]
datay=[]
for temp in datax:
datay.append(CalculateTheValueOfLarangeInterpolation(x,parameters,temp))
x.append(1.75)
y.append(CalculateTheValueOfLarangeInterpolation(x,parameters,1.75))
Draw(x,y,datax,datay)
print("得到的四次Lagrange插值多项式为:L(x) = %f(x-0)(x-1)(x-1.5)(x-2) + %f(x-0)(x-0.5)(x-1.5)(x-2) + %f(x-0)(x-0.5)(x-1)(x-2) + %f(x-0)(x-0.5)(x-1)(x-1.5)"%(parameters[1],parameters[2],parameters[3],parameters[4]))
五、运算结果
(1)图像
(2)运算结果
得到的四次Lagrange插值多项式为:L(x) = -0.166667(x-0)(x-1)(x-1.5)(x-2) + 4.000000(x-0)(x-0.5)(x-1.5)(x-2) + -13.500000(x-0)(x-0.5)(x-1)(x-2) + 10.666667(x-0)(x-0.5)(x-1)(x-1.5)
数值计算方法实验之Lagrange 多项式插值 (Python 代码)的更多相关文章
- 数值计算方法实验之newton多项式插值 (Python 代码)
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...
- 数值计算方法实验之Hermite 多项式插值 (Python 代码)
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...
- 数值计算方法实验之Newton 多项式插值(MATLAB代码)
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...
- 数值计算方法实验之按照按三弯矩方程及追赶法的三次样条插值 (MATLAB 代码)
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...
- 拉格朗日插值Python代码实现
1. 数学原理 对某个多项式函数有已知的k+1个点,假设任意两个不同的都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个lj(x)为拉格朗日基本多项式(或称插值基函数),其表 ...
- 数值计算方法 | C语言实现几个数值计算方法(实验报告版)
目录 写在前面 实验一 牛顿插值方法的实现 实验二 龙贝格求积算法的实现 实验三 高斯列主元消去法的实现 实验四 最小二乘方法的实现 写在前面 使用教材:<数值计算方法>黄云清等编著 科学 ...
- 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...
- 【剑指Offer】数值的整数次方 解题报告(Python)
[剑指Offer]数值的整数次方 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://www.nowcoder.com/ta/coding-interviews ...
- 安装notepad++ 安装Python Python环境变量的数值。怎样在notepad++上运行Python的代码
文章目录 1.下载安装一个Python的编辑器notepad++,(我这里有现成的,也可以去网上搜很多) 2.安装python,(我这里有现成的,也可以去网上下载). 3.怎样彻底删除Python,有 ...
随机推荐
- TensorFlow系列专题(七):一文综述RNN循环神经网络
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 前言 RNN知识结构 简单循环神经网络 RNN的基本结构 RNN的运算过程 ...
- 负载均衡器nginx和ribbon区别
1,nginx 是服务器端的负载均衡器,所有请求发送到nginx之后,nginx通过反向代理的功能分发到不同的服务器,做负载均衡 2,ribbon是客户端的负载均衡器,他是通过将eureka注册中心上 ...
- Python第十一章-常用的核心模块04-datetime模块
python 自称 "Batteries included"(自带电池, 自备干粮?), 就是因为他提供了很多内置的模块, 使用这些模块无需安装和配置即可使用. 本章主要介绍 py ...
- 利用sqlmap进行Access和Mysql注入
sqlmap将检测结果保存到C:\Users\Administrator.sqlmap\output (windows) linux:(/root/.sqlmap/output) Access注入 1 ...
- java 中的字符串处理--正则表达式
最近在做一些支付报文处理工作,需要从各种各样的报文中提取需要的信息比如(金额,订单号...),每个渠道报文各式各样,想要写一个通用的提取逻辑,于是就回顾java正则表达式的用法.当然我们可以自己写一些 ...
- LeetCode47, 全排列进阶,如果有重复元素怎么办?
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode第28篇,依然是全排列的问题. 如果对全排列不熟悉或者是最近关注的同学可以看一下上一篇文章: LeetCode46 回 ...
- 【python系统学习13】类(class)与对象(object)
目录: 类(class)和实例 类 实例 小测试 对象(object) 属性和方法 类的创建 伪代码 示例代码 属性(attribute) 方法(method) 类的实例化 实例对象调用类属性和方法 ...
- 感染(low)bfs 、感染(mid) 二分、感染(high) 二分 + 维护单调 队列去除无用的点
感染(low) Description n户人家住在一条直线上,从左往右依次编号为1,2,-,n.起初,有m户人家感染了COVID-19,而接下来的每天感染的人家都会感染他家左右两家的人,问t天后总共 ...
- Hadoop(十):本地IDEA链接远程Hadoop
本文使用的Hadoop为2.7.7,版本如果不同要下载相应版本的文件 配置本地的Hadoop库(不需完整安装,但是要有环境支持) 下载文件 https://github.com/speedAngel/ ...
- kepp running 团队视频分析初步总结
一.遇码则码队视频讨论: 时 间:2020.03.31 方 式:视频会议 参加人员:温学智,胡海靖,莫佳亮 二.视频讨论会议截图: 三.纪要内容: (1).主要功能和界面显示: 温学智:在 ...