实体识别中,或序列标注任务中的维特比Viterbi解码
看懂这个算法,首先要了解序列标注任务 QQ522414928 可以在线交流
大体做一个解释,首先需要4个矩阵,当然这些矩阵是取完np.log后的结果,
分别是:初始strat→第一个字符状态的概率矩阵,转移概率矩阵,发射概率矩阵,最后一个字符状态→end结束的概率矩阵,
这些概率矩阵可以是通过统计得到,或者是LSTM+crf这种训练迭代得到。
zero_log 指的是在统计中发射概率没有的情况下用这个很小的值来代替,lstm+crf中应该不会出现不存在的发射概率。
然后看代码
一个矩阵V:里面保存的是每个时间步上的每个状态对应的概率
一个字典path:里面保存的是 {当前标签:他之前所经过的路径}

然后最佳路径的计算经过三个部分:初试概率矩阵到第一个字符状态那部分,序列中字符状态转移和发射那部分,最后一个字符状态到end那部分
里边的发射分数和转移分数都使用加法计算是因为 发射矩阵和转移矩阵都经过了log取对数运算
def start_calcute(self,sentence):
'''
通过viterbi算法计算结果
:param sentence: "小明硕士毕业于中国科学院计算所"
:return: "S...E"
'''
zero = -3.14e+100
zero_log = np.log(-3.14e+100)
init_state = self.prob_dict["PiVector_prob"]
trans_prob = self.prob_dict["TransProbMatrix_prob"]
emit_prob = self.prob_dict["EmitProbMartix_prob"]
end_prob = self.prob_dict["EndProbMatrix_prob"] V = [{}] #其中的字典保存 每个时间步上的每个状态对应的概率
path = {} #初始概率
for y in self.state_list:
V[0][y] = init_state[y] + emit_prob[y].get(sentence[0],zero_log)
path[y] = [y] #从第二次到最后一个时间步
for t in range(1,len(sentence)):
V.append({})
newpath = {}
for y in self.state_list: #遍历所有的当前状态
temp_state_prob_list = []
for y0 in self.state_list: #遍历所有的前一次状态
cur_prob = V[t-1][y0]+trans_prob[y0][y]+emit_prob[y].get(sentence[t],zero_log)
temp_state_prob_list.append([cur_prob,y0])
#取最大值,作为当前时间步的概率
prob,state = sorted(temp_state_prob_list,key=lambda x:x[0],reverse=True)[0]
#保存当前时间步,当前状态的概率
V[t][y] = prob
#保存当前的状态到newpath中
newpath[y] = path[state] + [y]
#让path为新建的newpath
path = newpath #输出的最后一个结果只会是S(表示单个字)或者E(表示结束符)
(prob, state) = max([(V[len(sentence)][y]+end_prob[y], y) for y in ["S","E"]])
return (prob, path[state])
实体识别中,或序列标注任务中的维特比Viterbi解码的更多相关文章
- 命名实体识别,使用pyltp提取文本中的地址
首先安装pyltp pytlp项目首页 单例类(第一次调用时加载模型) class Singleton(object): def __new__(cls, *args, **kwargs): if n ...
- 用深度学习做命名实体识别(二):文本标注工具brat
本篇文章,将带你一步步的安装文本标注工具brat. brat是一个文本标注工具,可以标注实体,事件.关系.属性等,只支持在linux下安装,其使用需要webserver,官方给出的教程使用的是Apac ...
- 神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...
- 转:使用RNN解决NLP中序列标注问题的通用优化思路
http://blog.csdn.net/malefactor/article/details/50725480 /* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author ...
- 【神经网络】神经网络结构在命名实体识别(NER)中的应用
命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图.它是NLP领域中一些复杂任务(例如关系抽取,信息检索等)的 ...
- Oracle中的序列
序列是什么? 序列是用来生成唯一.连续的整数的数据库对象.序列通常用来自动生成主键或唯一键的值.序列可以按升序排列,也可以按照降序排列. 其实Oracle中的序列和MySQL中的自增长差不多一个意思. ...
- 2. 知识图谱-命名实体识别(NER)详解
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识 ...
- NLP(十四)自制序列标注平台
背景介绍 在平时的NLP任务中,我们经常用到命名实体识别(NER),常用的识别实体类型为人名.地名.组织机构名,但是我们往往也会有识别其它实体的需求,比如时间.品牌名等.在利用算法做实体识别的时候 ...
- 『深度应用』NLP命名实体识别(NER)开源实战教程
近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...
随机推荐
- 双剑合璧的开源项目Kitty-Cloud
项目地址 https://github.com/yinjihuan/kitty-cloud 背景 做这个项目主要是想将个人的一些经验通过开源的形式进行输出,不一定能帮到所有人,有感兴趣的朋友可以关注学 ...
- 自适应线性神经网络Adaline
自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络. 相对于感知器, 采用了f(z)=z的激活函数,属于连续函数. 代价函数为LMS函数,最小均方算法,Lea ...
- ios shell打包脚本 xcodebuild
#! /bin/bash project_path=$() project_config=Release output_path=~/Desktop build_scheme=YKTicketsApp ...
- Spring核心组件知识梳理
Spring的一些概念和思想 Spring的核心:AOP.IOC. 简单点说,就是把对象交给Spring进行管理,通过面向切面编程来实现一些"模板式"的操作,使得程序员解放出来,可 ...
- MySQL常用存储引擎:MyISAM与InnoDB之华山论剑
一 MyISAM 1.1 MyISAM简介 MyISAM是MySQL的默认数据库引擎(5.5版之前),由早期的 ISAM (Indexed Sequential Access Method:有索引的顺 ...
- SpringBoot登录判断
<!-- html登录代码 --> <div class="box"> <div class="title">登录</ ...
- 玩转控件:封装Dev的SearchLookupEdit
鸣谢 随着前面几个章节对控件封装与扩展的分享,不少小伙伴儿们在作者公众号上反馈,并联系作者,表示通过这些系列和源码能学到不少细节上的东西,并运用到了自己的实际项目当中,也有不少伙伴儿反馈更好更优的处理 ...
- Java 运行时数据区
写在前面 本文描述的有关于 JVM 的运行时数据区是基于 HotSpot 虚拟机. 概述 JVM 在执行 Java 程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以 ...
- python中使用163邮箱发送邮件一直报错的问题,谁能解决(已经各种百度完了,没能解决问题)
1.报错如下: 2.代码如下:
- Python常见数据结构-字符串
字符串基本特点 用引号括起来,单引号双引号均可,使用三个引号创建多行字符串. 字符串不可变. Python3直接支持Unicode编码. Python允许空字符串存在,不含任何字符且长度为0. 字符串 ...