Sampling Distribution of the Sample Mean|Central Limit Theorem
7.3 The Sampling Distribution of the Sample Mean
population:1000;Scale are normally distributed with mean 100 and standard deviation 16
sample:4;可以得到样本均值的分布图如下:
与通过公式计算得到的mean 和 标准差一致:μx¯ = μ = 100 and σx¯ = σ/√n = 16/√4 = 8;
由图可知The histogram is shaped roughly like a normal curve (with parameters 100 and 8)
所以:
由此得到:
即在大数据量的情况下,虽然变量可能不是正态分布的,但是该变量的mean值一定是正态分布的,也就是中心极限定理:
Usually, however, a sample size of 30 or more (n ≥ 30) is large enough
example:
统计每户房子占有人数:可知该变量属于右偏分布:
household size is far from being normally distributed; it is right skewed. Nonetheless, according to the central limit theorem, the sampling distribution of the sample mean can be approximated by a normal distribution when the sample size is relatively large. Use simulation to make that fact plausible for a sample size of 30
可以计算得到该样本mean的均值和方差:
We simulated 1000 samples of 30 households each, determined the sample mean of each of the 1000 samples, and obtained a histogram (Output 7.2) of the 1000 sample means.
从1000个样本中抽出30个样本,计算这三十个样本的均值,得到上图(即样本均值分布图,验证了中心极限定理,即该分布也是正态分布的)
变量分布/变量mean 分布(在n逐渐变大的趋势下)/
可见,SE也在逐渐变小
所以,取样越大,数据越集中在均值附近,相应的SE越小。
Sampling Distribution of the Sample Mean|Central Limit Theorem的更多相关文章
- Sampling Distributions and Central Limit Theorem in R(转)
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...
- Appendix 1- LLN and Central Limit Theorem
1. 大数定律(LLN) 设Y1,Y2,……Yn是独立同分布(iid,independently identically distribution)的随机变量,A = SY /n = (Y1+...+ ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 【概率论】6-3:中心极限定理(The Central Limit Theorem)
title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...
- Law of large numbers and Central limit theorem
大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...
- 中心极限定理(Central Limit Theorem)
中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为 ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...
- 中心极限定理 | central limit theorem | 大数定律 | law of large numbers
每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?
- [Math Review] Statistics Basic: Sampling Distribution
Inferential Statistics Generalizing from a sample to a population that involves determining how far ...
- Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...
随机推荐
- CF round #622 (div2)
CF Round 622 div2 A.简单模拟 B.数学 题意: 某人A参加一个比赛,共n人参加,有两轮,给定这两轮的名次x,y,总排名记为两轮排名和x+y,此值越小名次越前,并且对于与A同分者而言 ...
- ubuntu16.04 pcl安装教程
https://blog.csdn.net/zkj126521/article/details/80157351 https://blog.csdn.net/e_small/article/detai ...
- [CF百场计划]Codeforces Round #617 (Div. 3)
A. Array with Odd Sum Description You are given an array \(a\) consisting of \(n\) integers. In one ...
- Pythia:Facebook最新开源的视觉、语言多任务学习框架
Facebook 发布了一个全新的多任务学习框架 Pythia,它基于 PyTorch 且可用于视觉和语言的联合任务.Pythia 是一种模块化的即插即用框架,数据科学家和机器学习开发者能快速构建.复 ...
- Python说文解字_杂谈02
1. Py中三个中啊哟的概念type.object和class的关系. type生成了int生成了1 type->class->obj type用来生成类对象的 object是最顶层的基类 ...
- 创建DateFrame的常用四种方式
import pandas as pd %pylab 一.使用numpy创建 df = pd.DataFrame(np.arange(16).reshape((4,4)), index=list('a ...
- coures包下载和安装 可解决报错ImportError: No module named '_curses'
http://blog.csdn.net/liyaoqing/article/details/54949253 coures curses 库 ( ncurses )提供了控制字符屏幕的独立于终端的方 ...
- SSM到Spring Boot-校园商铺平台
第04章 店铺注册功能模块 4-3 Thumbnailator图片处理和封装Util[通过java代码实现给图片打上水印] 4-3 Thumbnailator图片处理和封装Util[通过java代码实 ...
- JAVA多线程之状态转换图
线程状态转换图如下: 1.新建(new):线程对象被创建后就进入了新建状态.如:Thread thread = new Thread(); 2.就绪状态(Runnable):也被称为“可执行状态”.线 ...
- ES6之模块化
本文介绍ES6实现模块化的方法:使用import和export. 导入的时候需不需要加大括号的判断:1.当用export default people导出时,就用 import people 导入(不 ...