Problem Description
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

 
Input
There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.
 
Output
For every number N, output a single line containing the single non-negative integer Z(N).
 
Sample Input
6
3
60
100
1024
23456
8735373
 
Sample Output
0
14
24
253
5861
2183837
 
Code:
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <ctype.h> using namespace std; /*N!末尾的0一定是由2*5产生的。 而且2因子的个数一定比5因子的个数多。 所以只需要求N!的5因子的个数。 用到了一个数论知识: 若p是质数,p<=n,则n!是p的倍数,设p^x是p在n!内的最高幂,则 x=[n/p]+[n/p^2]+[n/p^3]+............;
int a[50000];*/ int main()
{
int t;
scanf("%d",&t);
while(t--)
{
long n;
scanf("%ld",&n);
int cnt=,k=n/;
while(k>)
{
cnt+=k;
k/=;
}
printf("%d\n",cnt);
}
return ;
}

HDU1124 Factorial的更多相关文章

  1. [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  2. CodeForces 515C. Drazil and Factorial

    C. Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数

    LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...

  4. [codeforces 516]A. Drazil and Factorial

    [codeforces 516]A. Drazil and Factorial 试题描述 Drazil is playing a math game with Varda. Let's define  ...

  5. LeetCode Factorial Trailing Zeroes

    原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但 ...

  6. 【LeetCode】172. Factorial Trailing Zeroes

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your ...

  7. SPOJ #11 Factorial

    Counting trailing 0s of n! It is not very hard to figure out how to count it - simply count how many ...

  8. 欧拉工程第74题:Digit factorial chains

    题目链接:https://projecteuler.net/problem=74 数字145有一个著名的性质:其所有位上数字的阶乘和等于它本身. 1! + 4! + 5! = 1 + 24 + 120 ...

  9. CF Drazil and Factorial (打表)

    Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

随机推荐

  1. node项目的基本构建流程或者打开一个node项目的流程

    1.  确立项目所需要的所有依赖.框架(比如bootstrap,vue,angular等) 2. 在项目的根目录下创建一个package.json文件,package.json文件是项目的最重要文件之 ...

  2. jsp传到java的control层的方法

    jsp传到java的control层的方法1.form表单 用<input type="submit">提交,提交到后台的参数在form表单内<form meth ...

  3. EF架构~codeFirst从初始化到数据库迁移

    一些介绍 CodeFirst是EntityFrameworks的一种开发模式,即代码优先,它以业务代码为主,通过代码来生成数据库,并且加上migration的强大数据表比对功能来生成数据库版本,让程序 ...

  4. JAVA优雅停机的实现

    最近在项目中需要写一个数据转换引擎服务,每过5分钟同步一次数据.具体实现是启动engine server后会初始化一个ScheduledExecutorService和一个ThreadPoolExec ...

  5. Vulkan Tutorial 23 Descriptor layout and buffer

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 我们现在可以将任意属性传递给每个顶点的顶点着色器使用.但是 ...

  6. jeecg关闭当前iframe

    关闭当前iframe function closeDialog(){ frameElement.api.close();//本方法也行 //或者下面的方式 var win = frameElement ...

  7. java常见字符串的操作

    /** * java常见字符串的操作 */ public class Test7 { public static void main(String args[]){ StringBuffer sBuf ...

  8. linux服务器load的含义

    Linux的Load(系统负载),是一个让新手不太容易了解的概念.load的就是一定时间内计算机有多少个active_tasks,也就是说是计算机的任务执行队列的长度,cpu计算的队列. top/up ...

  9. 移动端布局,C3新增属性

    <html5拖拽> 1.给元素设置 draggable="true" 属性,这个元素就可以被拖拽了 <拖拽元素事件> 2.ondragstart 拖拽前触发 ...

  10. JavaScript函数的各种调用模式

    函数是JavaScript世界里的第一公民,换句话来说,就是我们如果可以精通JavaScript函数的使用,那么对JavaScript的运用可以更游刃有余了.熟悉JavaScript的人应该都知道,同 ...