本文引用文章如链接:

http://www.codinglabs.org/html/theory-of-mysql-index.html#more-100

参考书籍:Mysql技术内幕

本文主要是阐述mysql索引机制,主要是说明存储引擎Innodb

第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础。

第二部分结合MySQL数据库中InnoDB数据存储引擎中索引的架构实现讨论聚集索引、非聚集索引及覆盖索引等话题。

第三部分讨论MySQL中高性能使用索引的策略。

一、数据结构及算法理论

Innodb存储引擎实现索引的数据结构是B+树,下面介绍几种数据结构,一步步阐述为什么要使用B+树

1.1

B+树索引的构造类似于二叉树,根据键值快速找到数据。但是B+树种的B不是代表二叉,而是代表平衡。注意:B+树索引能找到的只是被查找数据行所在的页。然后数据库通过把页读入内存,再在内存中进行查找,最后查到数据。

下面介绍二分查找法:将记录按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,例如:5、10、19、21、31、37、42、48、50、52这10个数,如图所示:


 用了三次查找速度就能找到48。如果是顺序查找的话,则需要8次。对于上面10个数来说,顺序查找的平均查找次数为5.5次,而二分查找法为2.9次,在最坏的情况下,顺序查找的次数为10,而二分查找的次数为4。二分查找在innodb中Page Directory中的槽是按照主键的顺序存放的,对于每一条具体记录的查询时通过对Page Directory进行二分查找。

1.2

二叉查找树

数字代表每个节点的键值,二叉查找树中,左子树的键值总是小于跟的键值,右子树的键值总是大于跟的键值。通过中序遍历得到键值:2、3、5、6、7、8。

二叉查找树的平均查找次数为2.3次。但是二叉查找树是可以任意构建,如构造如图:


 但是这样跟顺序查找就差不多,所以就引用了平衡二叉树的思想,AVL树。

1.3

定义:符合二叉查找树的定义,其次必须满足任何节点的左右两个子树的高度最大差为1。

平衡二叉树虽然查找速度非常快但是维护一颗平衡二叉树的代价是非常大,通常需要1次或多次左旋和右旋来得到插入或更新后树的平衡性。

1.4

B+树的特性:

所有记录都在叶节点,并且是顺序存放,各个叶节点(页为单位)都是逻辑的连续存放,是一个双向循环链表。

B+树插入必须保证插入后叶节点中的记录依然排序,所以在插入时必须考虑以下三种情况:

B+树索引在数据库中有一个特点就是其高扇出性(?????),因此在数据库中,B+树高度一般在2-3层,也就是寻找某一键值的行记录,最多2-3次IO,而一般的磁盘每秒至少可以做100次IO,2-3次的意味着查询时间只需0.02-0.03秒。

二、聚集索引、非聚集索引(非常透彻)

聚集索引与非聚集索引的区别是:页节点是否存放一整行记录

2.1 聚集索引

InnoDB存储引擎表是索引组织表,即表中数据按照主键顺序存放。而聚集索引就是按照每张表的主键构造一颗B+树,并且叶节点中存放着整张表的行记录数据,因此也让聚集索引的叶节点成为数据页。聚集索引的这个特性决定了索引组织表中的数据也是索引一部分。同时B+树数据结构一样,每个数据页都通过一个双向链表来进行链接。

实际数据也只能按照一颗B+树进行排序,因此每张表只能拥有一个聚集索引。在许多情况下,查询优化器非常倾向于采用聚集索引,因为聚集索引能够让我们在索引的叶节点直接找到数据。此外,由于定义了数据的逻辑顺序,聚集索引能够快速地访问针对范围值得到查询。查询优化器能够快速发现某一段范围的数据需要扫描。注意每一个页中的记录也是双向链表维护的。

2.2  非聚集索引(辅助索引)

也称辅助索引,页级别不包含行的全部数据。页节点除了包含键值以外,每个页级别中的索引中还包含了一个书签,该书签用来告诉InnoDB存储引擎,哪里可以找到与索引相对应的行数据。因为InnoDB存储引擎表是索引组织表,因此InnoDB存储引擎的辅助索引书签就是相应行数据的聚集索引键。下图是聚集索引和辅助索引的关系:


 (查询过程)当通过辅助索引来寻找数据时,InnoDB存储引擎会遍历辅助索引并通过叶级别的指针获得指向主键索引的主键,然后再通过主键索引来找到了一个完整的行记录。举例来说:一颗高度为3的辅助索引树中查找数据,那么需要对这颗辅助索引遍历3次找到指定主键;如果聚集索引树的高度同样为3,那么还需要对聚集索引进行三次查找,才能查找一个完整的行数据所在的页,因此需要6次的逻辑Io来访问最终的一个数据页。

(转)MySql数据库索引原理(总结性)的更多相关文章

  1. mysql数据库----索引原理与慢查询优化

    一.介绍 1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语 ...

  2. mysql数据库索引原理及其常用引擎对比

    索引原理 树数据结构及其算法简介 B+/-树: - 多路搜索树; - 时间复杂度O(logdN);h为节点出度,d为深度 红黑树: - 节点带有颜色的平衡二叉树 - 时间复杂度O(log2N);h节点 ...

  3. MySQL 数据库--索引原理与慢查询优化

    索引的原理 本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据. 索引的数据结构 b+ ...

  4. MySql数据库索引原理

    写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将 ...

  5. mysql进阶(二十七)数据库索引原理

    mysql进阶(二十七)数据库索引原理 前言   本文主要是阐述MySQL索引机制,主要是说明存储引擎Innodb.   第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础.    ...

  6. 数据库MySQL 之 索引原理与慢查询优化

    数据库MySQL 之 索引原理与慢查询优化 浏览目录 索引介绍方法类型 聚合索引辅助索引 测试索引 正确使用索引 组合索引 注意事项 查询计划 慢查询日志 大数据量分页优化 一.索引介绍方法类型 1. ...

  7. MySQL数据库索引的底层原理(二叉树、平衡二叉树、B-Tree、B+Tree)

    1.MySQL数据库索引的底层原理 https://mp.weixin.qq.com/s/zA9KvCkkte2mTWTcDv7hUg

  8. 知识点:Mysql 数据库索引优化实战(4)

    知识点:Mysql 索引原理完全手册(1) 知识点:Mysql 索引原理完全手册(2) 知识点:Mysql 索引优化实战(3) 知识点:Mysql 数据库索引优化实战(4) 一:插入订单 业务逻辑:插 ...

  9. 十、mysql之索引原理与慢查询优化

    mysql之索引原理与慢查询优化 一.介绍 1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还 ...

随机推荐

  1. less函数

    问题描述: 在编写页面时,有以下几种按钮: 这时候我们CSS代码毫无疑问写一个公共类,然后再为每个按钮增加独自的样式如下: HTML: <div class="common a&quo ...

  2. 再来写一个随机数解决方案,对Random再来一次封装

    本文提供对Random的封装,简化并扩展了其功能 获取随机数,确保同时调用不会重复 //new Random().Next(5); RandomTask.Next(); 从一个列表中,随机获取其中某个 ...

  3. cordova 插件开发

    从事基于cordova开发混合APP也快一年了,一直没有自己"亲自操刀"写一个插件,因为网上插件太丰富了,可耻了. 今天完整的记录一次插件开发. cordova环境6.4.0 第一 ...

  4. bettercap实现内网Dns欺骗

    目的 让内网的所有计算机浏览网页的时候, 出现我的钓鱼页面 准备 kali系统 Bettercap dns文件 通过ifconfig查看当前计算机的ip, 我这边为, 192.168.1.150 创建 ...

  5. 高性能队列Disruptor系列3--Disruptor的简单使用(译)

    简单用法 下面以一个简单的例子来看看Disruptor的用法:生产者发送一个long型的消息,消费者接收消息并打印出来. 首先,我们定义一个Event: public class LongEvent ...

  6. Zab: A simple totally ordered broadcast protocol(译)

    摘要 这是一个关于ZooKeeper正在使用的全序广播协议(Zab)的简短概述.它在概念上很容易理解,也很容易实现,并且提供很高的性能.在这篇文章里,我们会呈现ZooKeeper在Zab上的需求,也会 ...

  7. 【LCA求最近公共祖先+vector构图】Distance Queries

    Distance Queries 时间限制: 1 Sec  内存限制: 128 MB 题目描述 约翰的奶牛们拒绝跑他的马拉松,因为她们悠闲的生活不能承受他选择的长长的赛道.因此他决心找一条更合理的赛道 ...

  8. XManager5连接CentOS7

    XManager5连接CentOS6的方法已经行不通了,那么如何用XManager5连接CentOS7 从Xmanger官网博客得知: "Gnome in CentOS 7 tries to ...

  9. 推荐几款.NET客户端开源报表图

    如果你正在开发客户端报表图相关的应用,除了.NET自带的控件,你还可以考虑使用以下几个控件库. [OxyPlot] OxyPlot是一个支持.NET的跨平台绘图库.你可以在很多平台上使用它,如WPF, ...

  10. javascript检测当前浏览器是否为微信浏览器

    <!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...