Problem Description
The aspiring
Roy the Robber has seen a lot of American movies, and knows that
the bad guys usually gets caught in the end, often because they
become too greedy. He has decided to work in the lucrative business
of bank robbery only for a short while, before retiring to a
comfortable job at a university.



V" title="Problem V">


For a few months now, Roy has been assessing the security of
various banks and the amount of cash they hold. He wants to make a
calculated risk, and grab as much money as possible.





His mother, Ola, has decided upon a tolerable probability of
getting caught. She feels that he is safe enough if the banks he
robs together give a probability less than this.
Input
The first line
of input gives T, the number of cases. For each scenario, the first
line of input gives a floating point number P, the probability Roy
needs to be below, and an integer N, the number of banks he has
plans for. Then follow N lines, where line j gives an integer Mj
and a floating point number Pj .

Bank j contains Mj millions, and the probability of getting caught
from robbing it is Pj .
Output
For each test
case, output a line with the maximum number of millions he can
expect to get while the probability of getting caught is less than
the limit set.



Notes and Constraints

0 < T <= 100

0.0 <= P <= 1.0

0 < N <= 100

0 < Mj <= 100

0.0 <= Pj <= 1.0

A bank goes bankrupt if it is robbed, and you may assume that all
probabilities are independent as the police have very low
funds.
Sample Input
3
0.04
3
1
0.02
2
0.03
3
0.05
0.06
3
2
0.03
2
0.03
3
0.05
0.10
3
1
0.03
2
0.02
3
0.05
Sample Output
2
4
6
题意:ROY想测试银行的安全系数;给你I个银行的钱数和被抓的概率;让你求被抓的条件下,能抢到的最多钱数;
解题思路:一开始想的是就是正着求,但是太麻烦了,还有交集,看了论坛上的留言才知道翻着求很简单;
以前做的DP都是累加,这个是累乘,剩下的就是01背包问题了;
感悟:冷静一下可能还有思路;
代码:
#include

#include

#include

#define maxn 105

using namespace std;

double dp[maxn*maxn],hold[maxn*maxn];

int cost[maxn*maxn];

int main()

{

   
//freopen("in.txt", "r", stdin);

    int
t,n,total_cost;

    double
p;

   
scanf("%d",&t);

   
while(t--)

    {

       
scanf("%lf %d",&p,&n);

       
p=1-p;//安全逃走的概率

       
total_cost=0;

       
for(int i=0;i

       
{

           
scanf("%d %lf",&cost[i],&hold[i]);

           
hold[i]=1-hold[i];

           
total_cost+=cost[i];

       
}

       
for(int i=1;i<=total_cost;i++)

           
dp[i]=0;

       
dp[0]=1;//什么也没偷安全的概率就是1;

       
for(int i=0;i

           
for(int j=total_cost;j>=cost[i];j--)

           
{

               
dp[j]=max(dp[j],dp[j-cost[i]]*hold[i]);

           
}

       
for(int i=total_cost;i>=0;i--)

           
if(dp[i]-p>0.00000000001)

           
{

               
printf("%d\n",i);

               
break;

           
}

    }

    return
0;

}

Problem V的更多相关文章

  1. 1254 Problem V

    问题 V: 光棍的yy 时间限制: 1 Sec  内存限制: 128 MB 提交: 42  解决: 22 [提交][状态][讨论版] 题目描述 yy经常遇见一个奇怪的事情,每当他看时间的时候总会看见1 ...

  2. Problem V: 零起点学算法20——输出特殊值II

    #include<stdio.h> int main() { printf("\\n"); ; }

  3. 2015-2016 ACM-ICPC Pacific Northwest Regional Contest (Div. 2)V - Gears

    Problem V | limit 4 secondsGearsA set of gears is installed on the plane. You are given the center c ...

  4. 菜鸟带你飞______DP基础26道水题

    DP 158:11:22 1205:00:00   Overview Problem Status Rank (56) Discuss Current Time: 2015-11-26 19:11:2 ...

  5. [kuangbin带你飞]专题十四 数论基础

            ID Origin Title   111 / 423 Problem A LightOJ 1370 Bi-shoe and Phi-shoe   21 / 74 Problem B ...

  6. Simple Addition

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=31329#problem/V 使用题目所给函数,单单从某一个数字来看,就是直接求这个数各个 ...

  7. Fibinary Numbers

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=30506#problem/V 题意:从右向左,每一个位数,分别表示一个fibonacci数 ...

  8. Maximum GCD(fgets读入)

    Maximum GCD https://vjudge.net/contest/288520#problem/V Given the N integers, you have to find the m ...

  9. HDU 4513 吉哥系列故事――完美队形II(Manacher)

    题目链接:cid=70325#problem/V">[kuangbin带你飞]专题十六 KMP & 扩展KMP & Manacher V - 吉哥系列故事――完美队形I ...

随机推荐

  1. java集合系列——List集合之Vector介绍(四)

    1. Vector的简介 JDK1.7.0_79版本 Vector 类可以实现可增长的对象数组.与数组一样,它包含可以使用整数索引进行访问的组件.但是,Vector 的大小可以根据需要增大或缩小,以适 ...

  2. 《算法导论》学习总结 — XX.第23章 最小生成树

    一.什么叫最小生成树 一个无向连通图G=(V,E),最小生成树就是联结所有顶点的边的权值和最小时的子图T,此时T无回路且连接所有的顶点,所以它必须是棵树. 二.为什么要研究最小生成树问题 <算法 ...

  3. sql sever 基础知识及详细笔记

    第六章:程序数据集散地:数据库 6.1:当今最常用的数据库 sql  server:是微软公司的产品 oracle:是甲骨文公司的产品 DB2:数据核心又称DB2通用服务器 Mysql:是一种开发源代 ...

  4. SpringBoot初体验

    1.elipse中创建Springboot项目并启动 具体创建步骤请参考:Eclipse中创建新的Spring Boot项目 2.项目的属性配置 a.首先我们在项目的resources目录下appli ...

  5. SQL Server 锁机制 悲观锁 乐观锁 实测解析

    先引入一些概念,直接Copy其他Blogs中的,我就不单独写了. 一.为什么会有锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 1.丢失更新 A,B两个用户读同一数据并进行修改,其中 ...

  6. 自动化selenium开发

    一.开发环境搭建 1.Firefox浏览器 1.1 下载firefix并安装. 1.2 Firefox中打开"开始菜单“ -> ”开发者“ -> ”获取更多工具“ -> 搜 ...

  7. Jquery 多选全选/取消 选项卡切换 获取选中的值

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  8. 【特效】hover效果之十字动画

    效果预览:http://www.gbtags.com/gb/rtreplayerpreview-standalone/3101.htm html: <div class="wrap&q ...

  9. 容器中使用iptables报错can't initialize iptables table Permission denied (you must be root)

    背景 在docker容器中部署了一微服务,该服务需要docker push镜像到docker registry.因此,docker容器中需要安装docker服务.但在启动容器的时候,却报错: can' ...

  10. Windows 10「设置」应用完整MS-Settings快捷方式汇总

    分类 设置名称 快捷方式 系统 显示 ms-settings:display 通知和操作 ms-settings:notifications 平板电脑模式 ms-settings:tabletmode ...