[bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)
Description
.jpg)
Input
第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。
接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。
Output
对于每一个第一类操作,输出一个非负整数表示答案。
Sample Input
Q Q
Q
L
L L
Q Q
Sample Output
HINT
对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。
.jpg)
Solution
时限比较长暗示此题的解法比较暴力
和前面count on a tree的做法一样,先遍历整片森林,初始化倍增数组,把点投到可持久化线段树里去
对于询问操作,一样地,直接递归求解即可
对于连接操作,我们用并查集加size域启发式合并来处理森林的联通状况,方便我们重构树的时候减少重构的点的数量,这样就优化了暴力重构的时间
#include<stdio.h>
#include<string.h>
#define N 80110
#define INF 1000000000
#define mid ((x>>1)+(y>>1)+(x&y&1))
inline void exc(int &x,int &y){
x^=y;y^=x;x^=y;
}
inline int Rin(){
int x=,c=getchar(),f=;
for(;c<||c>;c=getchar())
if(!(c^))f=-;
for(;c>&&c<;c=getchar())
x=(x<<)+(x<<)+c-;
return x*f;
}
int n,m,T,val[N],jump[N][],dep[N],pb[N],top,ans;
struct st{int f,s;}s[N];
inline int pre(int x){
while(s[x].f^x)x=s[x].f;
return x;
}
inline void onion(int x,int y){
x=pre(x),y=pre(y);
s[y].f=x,s[x].s+=s[y].s;
}
struct pt{int v;pt *nxt;}
*fst[N],e[N<<],*tot=e;
inline void link(int x,int y){
*++tot=(pt){y,fst[x]},fst[x]=tot;
*++tot=(pt){x,fst[y]},fst[y]=tot;
}
struct nt{
nt *l,*r;
int s;
}*rt[N],pool[],*C=pool;
inline nt *newnt(nt *_,nt *__,int ___){
C->l=_;C->r=__;C->s=___;
return C++;
}
nt *build(nt *p,int x,int y,int k){
if(!(x^y))return newnt(0x0,0x0,p->s+);
if(k<=mid)return newnt(build(p->l,x,mid,k),p->r,p->s+);
return newnt(p->l,build(p->r,mid+,y,k),p->s+);
}
void dfs(int x){
dep[x]=dep[jump[x][]]+;
rt[x]=build(rt[jump[x][]],,INF,val[x]);
for(pt *j=fst[x];j;j=j->nxt)
if(j->v^jump[x][])
jump[j->v][]=x,
dfs(j->v);
}
void dfs(int x,int f){
pb[++top]=x;
jump[x][]=f;
dep[x]=dep[f]+;
rt[x]=build(rt[f],,INF,val[x]);
for(pt *j=fst[x];j;j=j->nxt)
if(j->v^f)dfs(j->v,x);
}
int lca(int x,int y){
if(dep[x]<dep[y])exc(x,y);
for(int j=;~j;j--)
if(dep[jump[x][j]]>=dep[y])
x=jump[x][j];
if(!(x^y))return x;
for(int j=;~j;j--)
if(jump[x][j]^jump[y][j])
x=jump[x][j],y=jump[y][j];
return jump[x][];
}
int secret(nt *p1,nt *p2,nt *p3,nt *p4,int x,int y,int k){
if(!(x^y))return x;
int c=p1->l->s+p2->l->s-p3->l->s-p4->l->s;
if(k<=c)return secret(p1->l,p2->l,p3->l,p4->l,x,mid,k);
return secret(p1->r,p2->r,p3->r,p4->r,mid+,y,k-c);
}
int feel(int x,int y,int k){
int t=lca(x,y);
return secret(rt[x],rt[y],rt[t],rt[jump[t][]],,INF,k);
}
int main(){
T=Rin(),n=Rin(),m=Rin(),T=Rin();
for(int i=;i<=n;i++)
s[i].f=i,s[i].s=;
for(int i=;i<=n;i++)
val[i]=Rin();
for(int x,y;m;m--)
x=Rin(),y=Rin(),link(x,y),onion(x,y);
rt[]=newnt(C,C,);
for(int i=;i<=n;i++)
if(!jump[i][])
dfs(i);
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
jump[i][j]=jump[jump[i][j-]][j-];
char sign[];
for(int x,y,k;T;T--){
scanf("%s",sign);
x=Rin()^ans,y=Rin()^ans;
if(sign[]=='Q'){
k=Rin()^ans;
printf("%d\n",ans=feel(x,y,k));
}
else{
if(s[pre(x)].s>s[pre(y)].s)
exc(x,y);
top=;
dfs(x,y);
onion(x,y);
for(int j=;j<=;j++)
for(int i=;i<=top;i++)
jump[pb[i]][j]=jump[jump[pb[i]][j-]][j-];
link(x,y);
}
}
return ;
}
[bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)的更多相关文章
- 洛谷P3402 【模板】可持久化并查集 [主席树,并查集]
题目传送门 可持久化并查集 n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- bzoj3123 [Sdoi2013]森林 树上主席树+启发式合并
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3123 题解 如果是静态的查询操作,那么就是直接树上主席树的板子. 但是我们现在有了一个连接两棵 ...
- SPOJ COT Count on a tree(树上主席树 + LCA 求点第k小)题解
题意:n个点的树,每个点有权值,问你u~v路径第k小的点的权值是? 思路: 树上主席树就是每个点建一棵权值线段树,具体看JQ博客,LCA用倍增logn求出,具体原理看这里 树上主席树我每个点的存的是点 ...
- [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)
[BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...
- 并查集+启发式合并+LCA思想 || 冷战 || BZOJ 4668
题面:bzoj炸了,以后再补发 题解: 并查集,然后对于每个点记录它与父亲节点联通的时刻 tim ,答案显然是 u 到 v 的路径上最大的 tim 值.启发式合并,把 size 小的子树往大的上并,可 ...
- 2017 Multi-University Training Contest - Team 4 phone call(树+lca+并查集)
题解: (并查集处理往上跳的时候,一定要先让u,v往上跳到并查集的祖先,不然会wa掉) 代码如下: #include <iostream> #include <algorithm&g ...
- bzoj 3123 [Sdoi2013]森林(主席树+启发式合并+LCA)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- p3302 [SDOI2013]森林(树上主席树+启发式合并)
对着题目yy了一天加上看了一中午题解,终于搞明白了我太弱了 连边就是合并线段树,把小的集合合并到大的上,可以保证规模至少增加一半,复杂度可以是\(O(logn)\) 合并的时候暴力dfs修改倍增数组和 ...
随机推荐
- 1元搭建自己的云服务器&解析域名
最近在学做微信开发,没有自己的域名和服务器就不得不寄人篱下,索性自己就到云主机上搭建了个服务器,但是水平有限弄了一个下午~~有自己的域名和服务器的好处相信不用我多说了.比如日后可以有自己域名的个性博客 ...
- iOS: 在UIViewController 中添加Static UITableView
如果你直接在 UIViewController 中加入一个 UITableView 并将其 Content 属性设置为 Static Cells,此时 Xcode 会报错: Static table ...
- 基于 HTML5 的 Web SCADA 报表
背景 最近在一个 SCADA 项目中遇到了在 Web 页面中展示设备报表的需求.一个完整的报表,一般包含了筛选操作区.表格.Chart.展板等多种元素,而其中的数据表格是最常用的控件.在以往的工业项目 ...
- Kafka如何创建topic?
Kafka创建topic命令很简单,一条命令足矣:bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-facto ...
- Objective-c粒子动画
前面贴过几篇关于SpriteKit的案例文章,其中涉及到的动画都是材质类的图片切换或则常规的动画效果,没涉及到今天要说的粒子动画,今天说的粒子动画就是在游戏中实现更佳炫酷的效果必须使用的类,OC中粒子 ...
- php实现设计模式之 模板方法模式
<?php /** * 模板模式 * * 定义一个操作中的算法骨架,而将一些步骤延迟到子类中,使得子类可以不改变一个算法的结构可以定义该算法的某些特定步骤 * */ abstract class ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
- div仿textarea使高度自适应
今天真的有些无语,在百度上找了很多关于textarea和input高度自适应的代码,并且考虑到了要判断textarea的滚动条,从而动态改变它的高度,直到我搜索了这个让我目瞪狗呆的办法…… <d ...
- 3.1 js基本概念
js中的语法大量借鉴于C以及其他类C语言(Java,Perl). js中一切(变量.函数名.操作符等等)都区分大小写.如"var a;"中的变量a跟"var A;&quo ...
- BPM实例分享——金额规则大写
金额规则大写 在涉及金额的流程中经常会遇到需要大写金额数据与小写金额匹配,如何实现输入数字后自动转换呢? 初级用法: 1.在默认表单基本属性javascript 中增加如下金额转换方法 /** 数字金 ...