Ombrophobic Bovines

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18623   Accepted: 4057

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

题意:

f个草坪,每个草坪初始有a[i]头牛,最多可以容纳b[i]头牛,无向图,问最少需要多少时间可以使得每头牛都有归宿...

分析:

最大流的基础题目...但是我貌似脑残了...TAT...

先Floyd处理出每两个点之间的最短路,二分答案,然后建图...

我们第一想法一定是拆点,把每个点拆成一个出点一个入点,S向入点连一条容量为a[i]的边,出点向T连一条容量为b[i]的边,如果两个点之间最短路小于枚举的ans就连边...

但是这肯定是错误的...(随便一个数据就可以卡...)

正确的建图方法是S向出点连边,入点向T连边,出点向入点连边...这样一头牛从A转移到B之后就不可能再转移到其他点了...

zz的我把lr定义成了long long但是忘记改mid...TAT...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,sum,a[maxn],b[maxn],hd[maxn*],fl[maxm],to[maxm],nxt[maxm],pos[maxn*];
long long dis[maxn][maxn],Max; inline void add(int s,int x,int y){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool bfs(void){
memset(pos,-,sizeof(pos));
int head=,tail=,q[maxn*];
q[]=S,pos[S]=;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-;i=nxt[i])
if(pos[to[i]]==-&&fl[i])
pos[to[i]]=pos[top]+,q[++tail]=to[i];
}
return pos[T]!=-;
} inline int find(int v,int f){
if(v==T)
return f;
int res=,t;
for(int i=hd[v];i!=-&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+&&fl[i])
t=find(to[i],min(fl[i],f-res)),fl[i]-=t,fl[i^]+=t,res+=t;
if(!res)
pos[v]=-;
return res;
} inline int dinic(void){
int res=,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline int check(long long mid){
cnt=;memset(hd,-,sizeof(hd));
for(int i=;i<=n;i++)
add(a[i],S,i+n),add(b[i],i,T),add(inf,i+n,i);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(dis[i][j]<=mid)
add(inf,i+n,j);
return dinic();
} signed main(void){
// freopen("in.txt","r",stdin);
Max=,sum=cnt=;
scanf("%d%d",&n,&m);
S=,T=n*+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=INF;
for(int i=;i<=n;i++)
scanf("%d%d",&a[i],&b[i]),sum+=a[i];
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),dis[x][y]=dis[y][x]=min(dis[x][y],(long long)s);
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
long long l=,r=INF-,ans=-;
while(l<=r){
long long mid=(l+r)>>;
if(check(mid)==sum)
ans=mid,r=mid-;
else
l=mid+;
}
printf("%lld\n",ans);
return ;
}//Cap ou pas cap. Cap.

By NeighThorn

POJ 2391 Ombrophobic Bovines的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  3. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  4. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

  5. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  6. POJ 2391.Ombrophobic Bovines (最大流)

    实际上是求最短的避雨时间. 首先将每个点拆成两个,一个连接源点,一个连接汇点,连接源点的点的容量为当前单的奶牛数,连接汇点的点为能容纳的奶牛数. floyd求任意两点互相到达的最短时间,二分最长时间, ...

  7. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

  8. poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点

    题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...

  9. POJ 2391 Ombrophobic Bovines【二分 网络流】

    题目大意:F个草场,P条道路(无向),每个草场初始有几头牛,还有庇护所,庇护所有个容量,每条道路走完都有时间,问所有奶牛都到庇护所最大时间最小是多少? 思路:和POJ2112一样的思路,二分以后构建网 ...

随机推荐

  1. Hawk 4.3 转换器

    转换器是最为常用的一种类型,当然它的使用也是最复杂的. 转换器有三种子类型: A:单文档->单文档:例如仅将某一列的字符提取出来 B:单文档->多文档:典型的如从爬虫转换,每一行url都可 ...

  2. Design Patterns Simplified - Part 3 (Simple Factory)【设计模式简述--第三部分(简单工厂)】

    原文链接:http://www.c-sharpcorner.com/UploadFile/19b1bd/design-patterns-simplified-part3-factory/ Design ...

  3. Unity 3D json嵌套使用以及多种类型匹配

    我们控制端要发送很多命令给终端设备,其中有速度,方向,开关门,开关灯....方法千万种,我只取一瓢.我还小,不知道其他人是怎么写的.我喜欢把有规律的东西放在一起写!为了我的强迫症! using Uni ...

  4. C#中级-开机自动启动程序

    一.前言 关于C#开机自动启动程序的方法,网上出现比较多的是修改注册表: 1. HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion ...

  5. Java迭代器

    迭代器在其实就是指针,读取集合或者数组中的一个值,读完以后又指向下一条数据. iterator() 迭代器只读,不能改效率要比for循环高 迭代器的一些方法: HasNext() 如果仍有元素可以迭代 ...

  6. PHP 单例模式

    一.什么是单例模式? 1.含义 作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统全局地提供这个实例.它不会创建实例副本,而是会向单例类内部存储的实例返回一个引用. 2. ...

  7. springmvc4 mybatis 整合 框架源码 bootstrap

    A集成代码生成器 [正反双向(单表.主表.明细表.树形表,开发利器)+快速构建表单 下载地址    ; freemaker模版技术 ,0个代码不用写,生成完整的一个模块,带页面.建表sql脚本,处理类 ...

  8. Canvas的width,height 和 样式中Canvas的width,height

    控制Canvas的大小,有两种方式: 1:直接设置Canvas标签上的书width,height属性值; 2:通过Css设置Canvas的width,height; 这两种方式,区别是很大的. 1:C ...

  9. html中role的作用

    role 是增强语义性,当现有的HTML标签不能充分表达语义性的时候,就可以借助role来说明. 通常这种情况出现在一些自定义的组件上,这样可增强组件的可访问性.可用性和可交互性. role的作用是描 ...

  10. Eclipse安装Spring-tool-suite

    目录结构: // contents structure [-] 在Eclipse上安装Spring-tool-suite的方法有那些 如何查看自己的Eclipse版本 如何知道自己的Eclipse对应 ...