Ombrophobic Bovines

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18623   Accepted: 4057

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

题意:

f个草坪,每个草坪初始有a[i]头牛,最多可以容纳b[i]头牛,无向图,问最少需要多少时间可以使得每头牛都有归宿...

分析:

最大流的基础题目...但是我貌似脑残了...TAT...

先Floyd处理出每两个点之间的最短路,二分答案,然后建图...

我们第一想法一定是拆点,把每个点拆成一个出点一个入点,S向入点连一条容量为a[i]的边,出点向T连一条容量为b[i]的边,如果两个点之间最短路小于枚举的ans就连边...

但是这肯定是错误的...(随便一个数据就可以卡...)

正确的建图方法是S向出点连边,入点向T连边,出点向入点连边...这样一头牛从A转移到B之后就不可能再转移到其他点了...

zz的我把lr定义成了long long但是忘记改mid...TAT...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,sum,a[maxn],b[maxn],hd[maxn*],fl[maxm],to[maxm],nxt[maxm],pos[maxn*];
long long dis[maxn][maxn],Max; inline void add(int s,int x,int y){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool bfs(void){
memset(pos,-,sizeof(pos));
int head=,tail=,q[maxn*];
q[]=S,pos[S]=;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-;i=nxt[i])
if(pos[to[i]]==-&&fl[i])
pos[to[i]]=pos[top]+,q[++tail]=to[i];
}
return pos[T]!=-;
} inline int find(int v,int f){
if(v==T)
return f;
int res=,t;
for(int i=hd[v];i!=-&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+&&fl[i])
t=find(to[i],min(fl[i],f-res)),fl[i]-=t,fl[i^]+=t,res+=t;
if(!res)
pos[v]=-;
return res;
} inline int dinic(void){
int res=,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline int check(long long mid){
cnt=;memset(hd,-,sizeof(hd));
for(int i=;i<=n;i++)
add(a[i],S,i+n),add(b[i],i,T),add(inf,i+n,i);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(dis[i][j]<=mid)
add(inf,i+n,j);
return dinic();
} signed main(void){
// freopen("in.txt","r",stdin);
Max=,sum=cnt=;
scanf("%d%d",&n,&m);
S=,T=n*+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=INF;
for(int i=;i<=n;i++)
scanf("%d%d",&a[i],&b[i]),sum+=a[i];
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),dis[x][y]=dis[y][x]=min(dis[x][y],(long long)s);
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
long long l=,r=INF-,ans=-;
while(l<=r){
long long mid=(l+r)>>;
if(check(mid)==sum)
ans=mid,r=mid-;
else
l=mid+;
}
printf("%lld\n",ans);
return ;
}//Cap ou pas cap. Cap.

By NeighThorn

POJ 2391 Ombrophobic Bovines的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  3. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  4. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

  5. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  6. POJ 2391.Ombrophobic Bovines (最大流)

    实际上是求最短的避雨时间. 首先将每个点拆成两个,一个连接源点,一个连接汇点,连接源点的点的容量为当前单的奶牛数,连接汇点的点为能容纳的奶牛数. floyd求任意两点互相到达的最短时间,二分最长时间, ...

  7. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

  8. poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点

    题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...

  9. POJ 2391 Ombrophobic Bovines【二分 网络流】

    题目大意:F个草场,P条道路(无向),每个草场初始有几头牛,还有庇护所,庇护所有个容量,每条道路走完都有时间,问所有奶牛都到庇护所最大时间最小是多少? 思路:和POJ2112一样的思路,二分以后构建网 ...

随机推荐

  1. TeamCity : Build 基本配置

    前文中我们在 TeamCity 中创建了一个项目 HelloApp,并在这个项目中创建了一个名为 HelloAppDailyBuild 的Build 用来编译 demo 程序.本文我们将详细介绍 Bu ...

  2. angularjs和ajax的结合使用 (二)

    今天我们来继续丰富上次的例子.我们来搞些 稍微复杂点的应用. 首先我们来加一个全选 的功能. 上一篇的例子里我们看到 分页时载入的是我们通过linq 查询自定义列 然后构建的匿名类 .使用这种EF框架 ...

  3. 关系数据库SQL之可编程性触发器

    前言 前面关系数据库SQL之可编程性函数(用户自定义函数)一文提到关系型数据库提供了可编程性的函数.存储过程.事务.触发器及游标,前文已介绍了函数.存储过程.事务,本文来介绍一下触发器的使用.(还是以 ...

  4. asp.net创建事务的方法

    1.建立List用于存放多条语句 /// <summary> /// 保存表单 /// </summary> /// <param name="context& ...

  5. VS2012程序打包部署详解

    VS2012没有自带打包工具,所以要先下载并安装一个打包工具.我采用微软提供的打包工具:  InstallShield2015LimitedEdition.下载地址:https://msdn.micr ...

  6. c/c++常见面试题

    1. C中static有什么作用 (1)隐藏. 当我们同时编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性,故使用static在不同的文件中定义同名函数和同名变量,而不必担心命 ...

  7. 【无私分享:ASP.NET CORE 项目实战(第十二章)】添加对SqlServer、MySql、Oracle的支持

    目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 增加对多数据库的支持,并不是意味着同时对多种数据库操作,当然,后面,我们会尝试同时对多种数据库操作,这可能需要多个上下文,暂且 ...

  8. C# - 网络编程 之 TcpClient与TcpListener

    TcpClient类 TcpListener类 TCP通信 UDP通信 参考:

  9. Linux设置开机启动

    开机启动 解决服务器重启,比如断点,导致服务没有启动的烦恼   1.整理机器上面运行的服务,编些成sh脚本,文件为:/home/rc/exec.sh #加载环境变量 source /etc/profi ...

  10. POI读取EXCEL(2007以上)

    import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; im ...