Description

You have just moved from a quiet Waterloo neighbourhood to a big, noisy city. Instead of getting to ride your bike to school every day, you now get to walk and take the subway. Because you don't want to be late for class, you want to know how long it will take you to get to school. 
You walk at a speed of 10 km/h. The subway travels at 40 km/h. Assume that you are lucky, and whenever you arrive at a subway station, a train is there that you can board immediately. You may get on and off the subway any number of times, and you may switch between different subway lines if you wish. All subway lines go in both directions.

Input

Input consists of the x,y coordinates of your home and your school, followed by specifications of several subway lines. Each subway line consists of the non-negative integer x,y coordinates of each stop on the line, in order. You may assume the subway runs in a straight line between adjacent stops, and the coordinates represent an integral number of metres. Each line has at least two stops. The end of each subway line is followed by the dummy coordinate pair -1,-1. In total there are at most 200 subway stops in the city.

Output

Output is the number of minutes it will take you to get to school, rounded to the nearest minute, taking the fastest route.

Sample Input

0 0 10000 1000
0 200 5000 200 7000 200 -1 -1
2000 600 5000 600 10000 600 -1 -1

Sample Output

21

Source

Waterloo local 2001.09.22

这道题的思路简单来说就是将所有地铁站转换成点,然后预处理所有点间的边权(即将距离转换成时间),然后用最短路算法(例如SPFA)求出起点和目标点的距离。
但是!!!
说的简单,实现起来真TM麻烦。
第一:
需要四舍五入得到答案。
四舍五入的函数不难写,但是在哪里四舍五入是个问题。
回忆了一下做数学题的教训,前面一直用double保存边权,到最后再四舍五入误差最小。

第二:
每点间的距离处理。
你需要判断他们间的路是在地铁里还是人行道,所以我加了一个初始为1的变量p,每次输入-1,-1是就p++。
然后每次在两点间赋权的时候判断是不是在同一条地铁线上。

第三:
现在还没解决的问题,如果两条地铁线交叉,那么赋权就又有问题了,所以我希望可以用坐标来表示点,但是由于坐标可能给的很大,所以一直不知道怎么处理。

 
附上还没完成的代码(甚至样例都是错的),希望可以有所启发(还会不断更新,知道附上AC代码):
 
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int read()
{
int x=,y=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
y=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*y;
}
int abs(int x)
{
if(x<)
return -x;
else
return x;
}
int change(double x)
{
int r=(int)x;
if(x-r<0.5)
return r;
else
return r+;
}
double way(int x1,int y1,int x2,int y2)
{
int r1=abs(x1-x2),r2=abs(y1-y2);
return sqrt(r1*r1+r2*r2);
}
struct edge
{
int next,to;
double lon;
} e[];
int map[][],num,node[][],head[],cnt,t[],headd,tail=;
double dist[];
bool vis[];
void add(int from,int to,double lon)
{
e[++cnt].lon=lon;
e[cnt].to=to;
e[cnt].next=head[from];
head[from]=cnt;
}
int main()
{
memset(head,-,sizeof(head));
int x1=read(),y1=read(),x2=read(),y2=read(),x,y,p=,l=change(way(x1,y1,x2,y2)/*);
node[++num][]=x1;
node[num][]=y1;
node[++num][]=x2;
node[num][]=y2;
add(,,l);
add(,,l);
while(scanf("%d%d",&x,&y)!=EOF)
{
if(x==-&&y==-)
{
p++;
continue;
}
node[++num][]=x;
node[num][]=y;
node[num][]=p;
for(int i=; i<num; i++)
{
double dis;
if(node[i][]==p)
dis=way(x,node[i][],y,node[i][])/*;
else
dis=way(x,node[i][],y,node[i][])/*;
// printf("x=%d y=%d node[i][0]=%d node[i][1]=%d dis=%f\n",x,y,node[i][0],node[i][1],dis);
add(num,i,dis),add(i,num,dis);
}
}
for(int i=; i<=num; i++)
dist[i]=2e8;
t[]=;
while(headd!=tail)
{
int r=head[t[headd]];
vis[t[headd]]=;
while(r!=-)
{
if(dist[e[r].to]>dist[t[headd]]+e[r].lon)
{
dist[e[r].to]=dist[t[headd]]+e[r].lon;
printf("e[r].lon=%f e[r].to=%d dist=%f %f\n",e[r].lon,e[r].to,dist[t[headd]],dist[e[r].to]);
if(!vis[e[r].to])
{
vis[e[r].to]=;
t[tail++]=e[r].to;
}
}
r=e[r].next;
}
headd++;
}
printf("%f",dist[]);
return ;
} // FOR C.H

附上最新经谭姐启发写的正解方法代码(思路稍后,仍有问题在调试):

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
// 邻接链保存边
int head[],cnt,num;
struct edge
{
int next,to;
double lon;
} e[];
void add(int from,int to,double lon)
{
e[++cnt].lon=lon;
e[cnt].to=to;
e[cnt].next=head[from];
head[from]=cnt;
}
// 绝对值函数
int abs(int x)
{
if(x<)
return -x;
else
return x;
}
// 求两点间距离的函数
double far(int x1,int y1,int x2,int y2)
{
int r1=abs(x1-x2),r2=abs(y1-y2);
return sqrt(r1*r1+r2*r2);
}
// 将double转变成int的函数
int change(double x)
{
int r=(int)x;
if(x-r<0.5)
return r;
else
return r+;
}
int map[][];
// 输入处理,自认为比以前有所进步
void scan()
{
int x,y,p=,s=;
while(scanf("%d%d",&x,&y)!=EOF)
{
if(x==-&&y==-)
{
// 该条地铁线上的点和前后的点连无向快边
for(int i=; i<=s; i++)
{
double f=far(map[num-s+i-][],map[num-s+i-][],map[num-s+i][],map[num-s+i][])/*;
add(num-s+i-,num-s+i,f);
add(num-s+i,num-s+i-,f);
}
s=;
continue;
}
map[++num][]=x;
map[num][]=y;
s++;
}
}
// 每点到起点的距离
double dist[];
// SPFA的队列
int t[],headd,tail=;
bool vis[];
int main()
{
memset(head,-,sizeof(head));
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
scan();
// 每个点间连一条慢边,虽然可以优化,不用全部连,但是懒得打了,反正最短路嘛
for(int i=; i<=num; i++)
for(int j=; j<=num; j++)
{
double f=far(map[i][],map[i][],map[j][],map[j][])/*;
add(i,j,f);
}
// 每个点和起点连一条慢边
num++;
for(int i=; i<num; i++)
{
double f=far(map[i][],map[i][],x1,y1)/*;
add(i,num,f);
add(num,i,f);
}
// 除起点外和终点连一条慢边
num++;
for(int i=; i<num-; i++)
{
double f=far(map[i][],map[i][],x2,y2)/*;
add(i,num,f);
add(num,i,f);
}
// SPFA求起点到终点的最短路
t[]=num-;
vis[num-]=;
for(int i=; i<=num; i++)
dist[i]=2e8;
dist[num-]=;
while(headd!=tail)
{
int r=head[t[headd]];
printf("r=%d\n",r);
while(r!=-)
{
if(dist[e[r].to]>dist[t[headd]]+e[r].lon)
{
dist[e[r].to]=dist[t[headd]]+e[r].lon;
printf("dist[e[r].to]=%f\n",dist[e[r].to]);
if(!vis[e[r].to])
{
vis[e[r].to]=;
t[tail++]=e[r].to;
}
}
r=e[r].next;
}
headd++;
}
// 输出答案
printf("%d",change(dist[num]));
return ;
} // FOR C.H

终于迎来了最后一次编辑!

之前的程序有一个小错误找了半天,就是SPFA忘记出队,最后终于找到了!

还有,我还是把每个地铁站的点到其他地铁站的距离优化了一下,少加了几条(其实蛮多)边。

最后的AC代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
// 邻接链保存边
int head[],cnt,num;
struct edge
{
int next,to;
double lon;
} e[];
void add(int from,int to,double lon)
{
e[++cnt].lon=lon;
e[cnt].to=to;
e[cnt].next=head[from];
head[from]=cnt;
}
// 绝对值函数
int abs(int x)
{
if(x<)
return -x;
else
return x;
}
// 求两点间距离的函数
double far(int x1,int y1,int x2,int y2)
{
int r1=abs(x1-x2),r2=abs(y1-y2);
return sqrt(r1*r1+r2*r2);
}
// 四舍五入的函数
int change(double x)
{
int r=(int)x;
if(x-r<0.5)
return r;
else
return r+;
}
// 输入处理,自认为比以前有所进步
int map[][];
bool m[][];
void scan()
{
int x,y,p=,s=;
while(scanf("%d%d",&x,&y)!=EOF)
{
if(x==-&&y==-)
{
// 该条地铁线上的点和前后的点连无向快边
for(int i=; i<=s; i++)
{
double f=far(map[num-s+i-][],map[num-s+i-][],map[num-s+i][],map[num-s+i][])/*;
add(num-s+i-,num-s+i,f);
add(num-s+i,num-s+i-,f);
m[num-s+i-][num-s+i]=;
}
s=;
continue;
}
map[++num][]=x;
map[num][]=y;
s++;
}
}
// 每点到起点的距离
double dist[];
// SPFA的队列
int t[],headd,tail=;
bool vis[];
int main()
{
memset(head,-,sizeof(head));
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
scan();
// 每个点间连一条慢边,如果已经连了快边了就不用连
for(int i=; i<=num; i++)
for(int j=; j<=num; j++)
{
if(m[i][j]||m[j][i]||i==j)
continue;
double f=far(map[i][],map[i][],map[j][],map[j][])/*;
add(i,j,f);
}
// 每个点和起点连条慢边
num++;
for(int i=; i<num; i++)
{
double f=far(map[i][],map[i][],x1,y1)/*;
add(i,num,f);
add(num,i,f);
}
// 除起点外和终点连条慢边
num++;
for(int i=; i<num-; i++)
{
double f=far(map[i][],map[i][],x2,y2)/*;
add(i,num,f);
add(num,i,f);
}
// SPFA求起点到终点的最短路
t[]=num-;
vis[num-]=;
for(int i=; i<=num; i++)
dist[i]=2e8;
dist[num-]=;
while(headd!=tail)
{
int r=head[t[headd]];
vis[t[headd]]=;
while(r!=-)
{
if(dist[e[r].to]>dist[t[headd]]+e[r].lon)
{
dist[e[r].to]=dist[t[headd]]+e[r].lon;
if(!vis[e[r].to])
{
vis[e[r].to]=;
t[tail++]=e[r].to;
}
}
r=e[r].next;
}
headd++;
}
// 输出答案
printf("%d",change(dist[num]));
return ;
} // FOR C.H

POJ 2502 Subway-经过预处理的最短路的更多相关文章

  1. POJ 2502 Subway / NBUT 1440 Subway / SCU 2186 Subway(图论,最短距离)

    POJ 2502 Subway / NBUT 1440 Subway / SCU 2186 Subway(图论,最短距离) Description You have just moved from a ...

  2. POJ 2502 - Subway Dijkstra堆优化试水

    做这道题的动机就是想练习一下堆的应用,顺便补一下好久没看的图论算法. Dijkstra算法概述 //从0出发的单源最短路 dis[][] = {INF} ReadMap(dis); for i = 0 ...

  3. POJ 2502 Subway (最短路)

    Subway 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/L Description You have just moved ...

  4. POJ 2502 Subway ( 最短路 && 最短路建图 )

    题意 : 给出二维平面上的两个点代表起点以及终点,接下来给出若干条地铁线路,除了在地铁线路上行进的速度为 40km/h 其余的点到点间都只能用过步行且其速度为 10km/h ,现问你从起点到终点的最短 ...

  5. POJ 2502 Subway(迪杰斯特拉)

    Subway Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6692   Accepted: 2177 Descriptio ...

  6. POJ 2502 Subway (Dijkstra 最短+建设规划)

    Subway Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6689   Accepted: 2176 Descriptio ...

  7. POJ 2502 Subway

    Subway Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4928   Accepted: 1602 Descriptio ...

  8. (简单) POJ 2502 Subway,Dijkstra。

    Description You have just moved from a quiet Waterloo neighbourhood to a big, noisy city. Instead of ...

  9. Dijkstra+计算几何 POJ 2502 Subway

    题目传送门 题意:列车上行驶40, 其余走路速度10.问从家到学校的最短时间 分析:关键是建图:相邻站点的速度是40,否则都可以走路10的速度.读入数据也很变态. #include <cstdi ...

随机推荐

  1. Fiddler中如何抓取app中https(443端口)数据

    Fiddler不但能截获各种浏览器发出的HTTP请求, 也可以截获手机发出的HTTP/HTTPS请求,总结下Fiddler截获IPhone和Android发出的HTTP/HTTPS包,前提条件是:安装 ...

  2. MySQL优化总结,百万级数据库优化方案

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  3. LAMP的搭建与简易配置(apache,php已module方式结合)

    测试所用环境:centos7.2 apache php 所在主机IP:9.110.187.120 mariadb 所在主机IP:9.110.187.121 第一部分:环境搭建 yum安装软件包 其中a ...

  4. 解密Lazy<T>

    1.Lazy<T>的使用 无意间看到一段代码,在创建对象的时候使用了Lazy,顾名思义Lazy肯定是延迟加载,那么它具体是如何创建对象,什么时候创建对象了? 先看这段示列代码: publi ...

  5. WEB前端:浏览器(IE+Chrome+Firefox)常见兼容问题处理--01

    兼容问题目录 1.IE6下怪异盒模型 2.IE6下最小高度问题 3.IE6下不支持1px的点线 4.IE6下内容会把父级的高度撑开 5.IE6下只支持给a标签添加伪类 6.IE67下不支持给块标签加d ...

  6. Floyd判圈算法

    Floyd判圈算法 leetcode 上 编号为202 的happy number 问题,有点意思.happy number 的定义为: A happy number is a number defi ...

  7. JS/jQ常用宽高及应用

    关于js的宽高,随便一搜就是一大堆.这个一大堆对我来说可不是什么好事,看的头都大了.所以今天就总结了一些比较会常用的,并说明一下应用场景. 先来扯一下documentElement和body的微妙关系 ...

  8. 第二章完结,包含exam练习

    正则方程(Normal Equation) 梯度下降是最小化代价函数\(J(\theta)\)的一种方式,这里提出了另一种方式即正则方式不使用迭代方式:\(\theta = (X^TX)^{-1}X^ ...

  9. textarea的中文输入判断与搜狗输入法的特殊行为

    虽然要讲解的知识点是通用的,但是还是要介绍下我的应用场景和测试环境. 0.1 应用场景和测试环境 我的应用是一块使用Html Canvas开发的黑板,在黑板上实现简单的文字编辑功能. 操作系统:win ...

  10. python 标准库 -- logging

    线程安全的日志记录模块. 一. 使用示例 import logging logging.basicConfig(filename="app.log", format="% ...