Why you should QC your reads AND your assembly?
The genome sequence of the Common Carp Cyprinus carpio was published in Nature last week. By coincidence, I was doing some QC on some domesticated Ferret (Mustela ptorius furo) reads, which had thrown some kmer warnings in the FastQC tool. I blasted the kmers in NCBI and was quite perplexed by the number of hits that I found in the carp genome. Nearly all of the first 150 hits were all from the carp genome. Anyway, I looked a bit further into my odd kmers and it turns out that they were the ends of some Illumina adapter sequences that had presumably been incorporated into the paired-reads on the shorter ends of the insert size. This then took me back to the Carp Genome - what had creeped into that?
The only quality control they speak of is "We then filtered out low-quality and short reads to obtain a set of usable reads".
So I thought I'd look at what was actually in their assembly. I downloaded the Carp genome assembly (9377 scaffolds) and created a blast database from it and then created a fasta file of Illumina adapter sequences (found here) and used them as query sequences to blast against the Carp genome. There is some redundancy in the Illumina adapter sequences, so I collapsed them, so retaining only unique sequences and then removed any adapter sequences that were sub-sequences of longer adapter (the final file consisted of 81 sequences). The blast resulted in 3750 hits (evalue < 8.00E-06) of which 1009 were of 100% identity.
This gave me a final tally of at least 20 Illumina adapter sequences incorporated into the final Common Carp genome assembly. Out of the 9377 scaffolds, 277 appears to have Illumina Adapter sequences in them. I've included the counts of the different Illumina adapter sequences (non-redundant) for the scaffolds at the bottom of the page.
I've not looked for adapter sequences used in Solid or 454 sequencing yet. It would be interesting to see what that throws up.
So, a lesson to be learned here. QC your assembly, especially if you're not overly stringent with your read QC.
Here's the data:
Common Carp genome scaffolds
Illumina adapter sequences
Illumina adapter sequences collapsed
Illumina adapters v Carp genome blast
Why you should QC your reads AND your assembly?的更多相关文章
- 10、RNA-seq for DE analysis training(Mapping to assign reads to genes)
1.Goal of mapping 1)We want to assign reads to genes they were derived from 2)The result of the mapp ...
- samtools flagstat
samtools flagstat命令简介: 统计输入文件的相关数据并将这些数据输出至屏幕显示.每一项统计数据都由两部分组成,分别是QC pass和QC failed,表示通过QC的reads数据量和 ...
- sam/bam格式
1)Sam (Sequence Alignment/Map) ------------------------------------------------- 1) SAM 文件产生背景 随着Ill ...
- bam文件测序深度统计-bamdst
最近接触的数据都是靶向测序,或者全外测序的数据.对数据的覆盖深度及靶向捕获效率的评估成为了数据质量监控中必不可少的一环. 以前都是用samtools depth 算出单碱基的深度后,用perl来进行深 ...
- [题解+总结]NOIP2010-2015后四题汇总
1.前言 正式开始的第一周的任务--把NOIP2010至NOIP2015的所有D1/2的T2/3写出暴力.共22题. 暴力顾名思义,用简单粗暴的方式解题,不以正常的思路思考.能够较好的保证正确性,但是 ...
- DISCOVAR de novo
海宝建议用这个拼接软件 http://www.broadinstitute.org/software/discovar/blog/?page_id=98 DISCOVAR – variant call ...
- MySql数据库3【优化3】缓存设置的优化
1.表缓存 相关参数: table_open_cache 指定表缓存的大小.每当MySQL访问一个表时,如果在表缓冲区中还有空间,该表就被打开并放入其中,这样可以更快地访问表内容.通过检查峰值时间的状 ...
- 浅谈MySQL 数据库性能优化
MySQL数据库是 IO 密集型的程序,和其他数据库一样,主要功能就是数据的持久化以及数据的管理工作.本文侧重通过优化MySQL 数据库缓存参数如查询缓存,表缓存,日志缓存,索引缓存,innodb缓存 ...
- 拾人牙慧篇之———QQ微信的第三方登录实现
一.写在前面 关于qq微信登录的原理之流我就不一一赘述了,对应的官网都有,在这里主要是展示我是怎么实现出来的,看了好几个博客,有的是直接复制官网的,有的不知道为什么实现不了.我只能保证我的这个是我实现 ...
随机推荐
- 「七天自制PHP框架」第二天:模型与数据库
往期回顾:「七天自制PHP框架」第一天:路由与控制器,点击此处 什么是模型? 我们的WEB系统一定会和各种数据打交道,实际开发过程中,往往一个类对应了关系数据库的一张或多张数据表,这里就会出现两个问题 ...
- Angular vs React 最全面深入对比
如今,Angular和React这两个JavaScript框架可谓红的发紫,同时针对这两个框架的选择变成了当下最容易被问及或者被架构设计者考虑的问题,本文或许无法告诉你哪个框架更优秀,但尽量从更多的角 ...
- 字符型SQL注入
字符型SQL注入 很早就基于DVWA实现了字符型的SQL注入,但是一直感觉自己没有理解的特别清楚,这次又看了一下网上的一些讲解,试着总结一下.以下是我的一写浅薄见解,请大家批判着看. 基本原理 看 ...
- webstorm html碎片整理功能
我们用字符串形式写html模板时,或者向某标签添加html内容时,如下,如果这个str更加的长,一旦里面少了一个单引号,少了一个加号,基本报错还看不懂,一脸懵逼... // 假定后台传给我们的数据为 ...
- Python错误集
1-->IndentationError:expected an indented block >IndentationError: unindent does not match a ...
- Volley使用指南
1.什么是Volley 在这之前,我们在程序中需要和网络通信的时候,大体使用的东西莫过于AsyncTaskLoader,HttpURLConnection,AsyncTask,HTTPClient(A ...
- lightOJ 1258 Making Huge Palindromes(KMP)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1258 就是求逆串和原串的匹配长度 答案就是原串长度的2倍减去匹配长度即可 第一次我将原 ...
- Asp.Net Core 中获取应用程序物理路径(Getting the Web Root Path and the Content Root Path in ASP.NET Core)
如果要得到传统的ASP.Net应用程序中的相对路径或虚拟路径对应的服务器物理路径,只需要使用使用Server.MapPath()方法来取得Asp.Net根目录的物理路径,如下所示: // Classi ...
- 深入理解IOC
1. IoC理论的背景 我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. 图1:软件系统中耦合的对象 如果我们打开机 ...
- Vue声明式渲染
Vue.js 的核心是一个允许采用简洁的模板语法来声明式的将数据渲染进 DOM,也就是将模板中的文本数据写进DOM中,使用 {{data}} 的格式写入.此代码都是Vue.js官网上的实例. 1. ...