Polycarp has a lot of work to do. Recently he has learned a new time management rule: "if a task takes five minutes or less, do it immediately". Polycarp likes the new rule, however he is not sure that five minutes is the optimal value. He supposes that this value d

should be chosen based on existing task list.

Polycarp has a list of n

tasks to complete. The i-th task has difficulty pi, i.e. it requires exactly pi minutes to be done. Polycarp reads the tasks one by one from the first to the n-th. If a task difficulty is d or less, Polycarp starts the work on the task immediately. If a task difficulty is strictly greater than d

, he will not do the task at all. It is not allowed to rearrange tasks in the list. Polycarp doesn't spend any time for reading a task or skipping it.

Polycarp has t

minutes in total to complete maximum number of tasks. But he does not want to work all the time. He decides to make a break after each group of m consecutive tasks he was working on. The break should take the same amount of time as it was spent in total on completion of these m

tasks.

For example, if n=7

, p=[3,1,4,1,5,9,2], d=3 and m=2

Polycarp works by the following schedule:

  • Polycarp reads the first task, its difficulty is not greater than d

(p1=3≤d=3) and works for 3 minutes (i.e. the minutes 1, 2, 3

  • );
  • Polycarp reads the second task, its difficulty is not greater than d

(p2=1≤d=3) and works for 1 minute (i.e. the minute 4

  • );
  • Polycarp notices that he has finished m=2

tasks and takes a break for 3+1=4 minutes (i.e. on the minutes 5,6,7,8); Polycarp reads the third task, its difficulty is greater than d (p3=4>d=3) and skips it without spending any time; Polycarp reads the fourth task, its difficulty is not greater than d (p4=1≤d=3) and works for 1 minute (i.e. the minute 9); Polycarp reads the tasks 5 and 6, skips both of them (p5>d and p6>d); Polycarp reads the 7-th task, its difficulty is not greater than d (p7=2≤d=3) and works for 2 minutes (i.e. the minutes 10, 11); Polycarp notices that he has finished m=2 tasks and takes a break for 1+2=3 minutes (i.e. on the minutes 12,13,14). Polycarp stops exactly after t minutes. If Polycarp started a task but has not finished it by that time, the task is not considered as completed. It is allowed to complete less than m tasks in the last group. Also Polycarp considers acceptable to have shorter break than needed after the last group of tasks or even not to have this break at all — his working day is over and he will have enough time to rest anyway.Please help Polycarp to find such value d, which would allow him to complete maximum possible number of tasks in t minutes.InputThe first line of the input contains single integer c (1≤c≤5⋅104) — number of test cases. Then description of c test cases follows. Solve test cases separately, test cases are completely independent and do not affect each other.Each test case is described by two lines. The first of these lines contains three space-separated integers n, m and t (1≤n≤2⋅105,1≤m≤2⋅105,1≤t≤4⋅1010) — the number of tasks in Polycarp's list, the number of tasks he can do without a break and the total amount of time Polycarp can work on tasks. The second line of the test case contains n space separated integers p1,p2,…,pn (1≤pi≤2⋅105) — difficulties of the tasks.The sum of values n for all test cases in the input does not exceed 2⋅105.OutputPrint c lines, each line should contain answer for the corresponding test case — the maximum possible number of tasks Polycarp can complete and the integer value d (1≤d≤t) Polycarp should use in time management rule, separated by space. If there are several possible values d for a test case, output any of them.

Examples
Input
4
5 2 16
5 6 1 4 7
5 3 30
5 6 1 4 7
6 4 15
12 5 15 7 20 17
1 1 50
100
Output
3 5
4 7
2 10
0 25
题意:有n个任务,每一个任务都有一个难度pi你有t个时间去完成这些任务,对于难度为pi的任务你需要pi个时间去完成,对于你要完成的任务有一个限制范围d(你只能完成难度小于等于d的任务),当你每完成m个任务时你需要休息;
一旦遇到难度比d小的任务你必须完成它;
题解:这道题的关键是找到d的最小下界,如果找到d这道题也就解决了,而这个题就转换成了二分找最大化最小值的问题;再不休息的情况下二分查找mid,找到符合条件的最小值就可以啦(符合条件:难度小于d的任务难度之和必须大于t)
这样我们就找到了d(由于mid,和mid-1不确定,所以我们要都搜索一下),输出任务的最大值,和d就可以啦;这道题由于数据量比较大,所以cin会超时,所以要用scanf;
 #include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
#include<algorithm>
#include<iostream>
#include<map>
#include<vector>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
ll m,n,k,kmp,ans1,ans2=,flag;
map<ll,pair<ll,ll> >mp;
vector<ll>str;
bool check(ll mid)
{
ll sum=,num=,cnt=,kk=,kmp;
for(ll i=; i<m; i++)
{
if(str[i]<=mid)
{
if(num==n)
{
num=;
kk+=sum*;
sum=;
}
num++;
sum+=str[i];
cnt++;
if(sum+kk<=k)
{
ans1=cnt;
ans2=mid;
flag=;
}
}
}
if(flag)//如果满足条件就存起来
{
mp[mid].first=ans1;
mp[mid].second=ans2;
}
return kk+sum>k;
}
void solve()
{
cin>>m>>n>>k;
ll p;
str.clear();
for(ll i=; i<m; i++)
{
scanf("%lld",&p);
str.push_back(p);
}
ll pos=k;
for(ll l=,r=k; l<=r;)
{
ll mid=(l+r)/;
if(check(mid))
{
r=mid-;
pos=mid;
}
else
{
l=mid+;
}
} check(pos-);
if(!flag)
cout<<ans1<<" "<<""<<endl;
else//找到可行解
{
if(mp[pos].first>mp[pos-].first)//我用了pair,只是秀一下操作,直接用map就可以啦
cout<<mp[pos].first<<" "<<mp[pos].second<<endl;
else
cout<<mp[pos-].first<<" "<<mp[pos-].second<<endl; } }
int main()
{
ll T;
scanf("%lld\n",&T);
while(T--)
{
solve();
mp.clear();
ans1=,ans2=;flag=;//一定要初始化
}
}

codeforce 1070 E Getting Deals Done(二分求最大化最小值)的更多相关文章

  1. POJ 3258(二分求最大化最小值)

    题目链接:http://poj.org/problem?id=3258 题目大意是求删除哪M块石头之后似的石头之间的最短距离最大. 这道题目感觉大致代码写起来不算困难,难点在于边界处理上.我思考边界思 ...

  2. POJ_2456 Aggressive cows 【二分求最大化最小值】

    题目: Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are l ...

  3. POJ-2456.Aggressivecows.(二分求解最大化最小值)

    本题大意:在坐标轴上有n个点,现在打算在这n个点上建立c个牛棚,由于牛对厂主的分配方式表示很不满意,它很暴躁,所以它会攻击离它很近的牛来获得快感,这件事让厂主大大知道了,他怎么可能容忍?所以他决定有策 ...

  4. [ACM] POJ 3258 River Hopscotch (二分,最大化最小值)

    River Hopscotch Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6697   Accepted: 2893 D ...

  5. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  6. hdu5256 二分求LIS+思维

    解题的思路很巧,为了让每个数之间都留出对应的上升空间,使a[i]=a[i]-i,然后再求LIS 另外二分求LIS是比较快的 #include<bits/stdc++.h> #define ...

  7. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  8. 二分求幂,快速求解a的b次幂

    一个引子 如何求得a的b次幂呢,那还不简单,一个for循环就可以实现! void main(void) { int a, b; ; cin >> a >> b; ; i < ...

  9. hdu 3641 数论 二分求符合条件的最小值数学杂题

    http://acm.hdu.edu.cn/showproblem.php?pid=3641 学到: 1.二分求符合条件的最小值 /*================================= ...

随机推荐

  1. pip 在windows下的更新升级

    1. pip 在 PyCharm 无法自动更新 2.   https://pip.pypa.io/en/latest/installing.html 官方网页要求在 cmd中输入以下命令进行 pip的 ...

  2. matlab rand, randn, randi

    rand 生成均匀分布的伪随机数.分布在(0~1)之间 randn 生成标准正态分布的伪随机数(均值为0,方差为1) randi 生成均匀分布的伪随机整数  

  3. Windows下安装Redis服务,修改查看密码,修改端口,常用命令

    一.安装 出自:https://jingyan.baidu.com/article/0f5fb099045b056d8334ea97.html 1.要安装Redis,首先要获取安装包.Windows的 ...

  4. gradle java 简单项目使用

    预备环境 gradle 配置好变量,方便生成项目 1. 环境配置 gradle wrapper 生成项目结构 ├── build.gradle ├── gradle │ └── wrapper │ ├ ...

  5. YARN的Fair Scheduler和Capacity Scheduler

    关于Scheduler YARN有四种调度机制:Fair Schedule,Capacity Schedule,FIFO以及Priority: 其中Fair Scheduler是资源池机制,进入到里面 ...

  6. 使用RawComparator加速Hadoop程序

    使用RawComparator加速Hadoop程序 在前面两篇文章[1][2]中我们介绍了Hadoop序列化的相关知识,包括Writable接口与Writable对象以及如何编写定制的Writable ...

  7. Java堆栈解析

    1.RAM和ROM区别RAM-RamdomAccessMemory随机存取存储器(断电后数据会丢失),高速存取,读写时间相等,且与地址无关,如计算机内存等. ROM-Read Only Memory只 ...

  8. SQL Server数据库常用的T-SQL命令

    1. 查看数据库的版本 select @@version 2.查看数据库所在机器操作系统参数 exec master..xp_msver 3. 查看数据库启动的参数 sp_configure 4.查看 ...

  9. USB驱动程序之USB总线驱动程序学习笔记

    USB总线驱动程序的作用 1. 识别USB设备 1.1 分配地址 1.2 并告诉USB设备(set address) 1.3 发出命令获取描述符 描述符的信息可以在include\linux\usb\ ...

  10. 【UVA】11464 Even Parity(枚举子集)

    题目 传送门:QWQ 分析 标准的套路题. 枚举第一行,接着根据第一行递推下面的行. 时间复杂度$ O(2^n \times n^2) $ 代码 #include <bits/stdc++.h& ...